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Abstract
The explosive use of social media, in information dissem-
ination and communication, has also made it a popular
platform for the spread of rumors. Rumors could be easily
propagated and received by a large number of users in
social media, resulting in catastrophic effects in the physical
world in a very short period. It is a challenging task,
if not impossible, to apply classical supervised learning
methods to the early detection of rumors, since the labeling
process is time-consuming and labor-intensive. Motivated
by the fact that abundant label information of historical
rumors is publicly available, in this paper, we propose to
investigate whether knowledge learned from historical data
could potentially help identify newly emerging rumors. In
particular, since a disputed factual claim arouses certain
reactions such as curiosity, skepticism, and astonishment, we
identify and utilize patterns from prior labeled data to help
reveal emergent rumors. Experimental results on real-world
data sets demonstrate the effectiveness. Further experiments
are conducted to show how much earlier it can detect an
emerging rumor than traditional approaches.

1 Introduction

The prevalence of social media has revolutionized the
way of information dissemination and communication.
The openness of social media platforms enables timely
information to be spread at a high rate. Meanwhile,
it also allows for the rapid creation and dissemination
of rumors, which could cause catastrophic effects in the
real world within a short period. For example, on April
23rd 2013, the hacked Twitter account of Associate
Press posted a false claim of an attack on the White
House, which was soon covered by news agencies, and
wiped out $136 billion in the stock market within two
minutes1. It would be appealing if emerging rumors
could be automatically detected in its early stage.

Classical rumor detection methods highly depend
on learning patterns from manually labeled data. A
straightforward way is to learn a classifier or regressor
based on labeled rumors, and then the built model
can be employed to determine the credibility of a new
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message or user. However, in real-world applications,
annotating a rumor dataset could be time-consuming
and labor-intensive, sometimes even impractical. The
labeling bottleneck brings in an unavoidable delay for
existing systems, resulting in significant challenges to
enable the system to detect new rumors in a timely
manner. Therefore, it would be desirable to develop
a way for rumor detection without the labeling process.

While the problem of detecting rumors on social
media is relatively new, rumors have been extensively
investigated for years in social and psychological studies.
The literature can be traced back to [2]. A conventional
methodology of studying rumors is to analyze the
testimonies. The origins, consequences and potential
impact of a rumor can be well estimated by linking it
to a historical rumor through examining the behaviors
of social participants who are exposed to it [3, 20], since
similar rumors usually trigger similar reactions, such as
curiosity, inquiry, and anxiety. Although the content
on social networks is informal, its significant role in
understanding a rumor has been found [17]. Motivated
by the previous findings, we explore the possibility of
using the abundant labeled data from prior rumors to
facilitate the detection of an emerging rumor.

However, it is particularly difficult and challenging
to directly use labeled data from one rumor to build
a detection model for the other, a.k.a. cross-training.
Cross-training can be successfully applied to problems
of which different tasks are similar. Since rumor
data is highly topic-sensitive, the vocabulary and word
choice may vary substantially between different rumors.
Therefore, directly applying an existing dataset would
lead to the inclusion of noisy features and thus may
negatively inhibit the prediction accuracy. In addition,
since a certain category of rumors may trigger specific
reactions, e.g., wedge-driving rumors cause hatred and
atrocity rumors arouse astonishment, it is ideal to
find useful patterns within a category. Due to the
lack of availability of the category information, it is
difficult to find the scarce patterns out of miscellaneous
labeled data. Also, since social media users tend
to communicate concisely and casually [10], the short
content may further exacerbate the scarcity problem.



Table 1: Two real-world examples of social media rumors.

(a) An example rumor about the Presidential election and

the corresponding social media posts.

Rumor
Rightwing Christian says elect #trump
or face #deathcamps run by #liberals
http://bit.ly/2as5MJ5 .

Post #1 Christian conservative gets political. Can’t
fix stupid but it can be blocked.

Post #2 So, when did bearing false witness become a
Christian value?

Post #3
Graham Says Christians Must Support
Trump or Face Death Camps. Does he still
claim to be a Christian?

(b) An example rumor about the Ferguson protests and the

corresponding social media posts.

Rumor
A Ferguson protesting sign reads ’No Mother
Should Fear for Her Son’s Life Every Time
He Robs a Store.’

Post #1 i’ve just seen the sign on fb. you can’t fix
stupid.

Post #2 THIS IS PURE INSANITY.. HOW ABOUT
THIS STATEMENT.

Post #3
No Mother Should Have To Fear For Her
Son’s Life Every Time He Robs A Store
#AllLivesMatt

In order to tackle the aforementioned challenges, we
present a novel learning framework to detect emerging
rumors with existing labeled data from prior rumors.
The proposed framework is built upon a sparse represen-
tation model, and it jointly selects descriptive features
from prior labeled data and trains the topic-independent
classifier with selected features. The proposed frame-
work extends the earliness bottleneck of current rumor
detection methods. Our contributions are summarized
below:

• Providing a principled way to leverage prior labeled
data to detect emerging rumors;

• Proposing a novel sparse learning method to jointly
select features and train the classifier for rumors;

• Evaluating the proposed framework extensively
using real-world social media data.

The rest of the paper is organized as follows. We
introduce the main intuition and formulate the problem
in Section 2. The proposed framework is presented in
Section 3. Section 4 discusses the experiments and
the results on effectiveness and earliness. Section 5
introduces the relationship to existing work. Section 6
concludes the paper and points out future directions.

2 Emerging Rumor Detection Framework

In this section, we introduce our motivation of lever-
aging labeled data from prior rumors. We also briefly
introduce the proposed framework, and formally define
the computational problem.

2.1 Motivation In Table 1, we display rumors about
two topics. The first rumor in Table 1(a) is about
endorsements for the presidential candidate. The rumor
says a famous evangelist urged Christians to vote for
Donald Trump, otherwise they will face death camps.
The following three sentences are posts of the rumor.
The second rumor in Table 1(b) is about a Ferguson

protester. The rumor says the sign that the protesters
are holding reads “No Mother Should Fear for Her Son’s
Life Every Time He Robs a Store”. The bias of word
choice of different rumor topics makes it difficult for
cross-training. For example, the classifiers trained on
the first rumor, which use features such as “political”
and “Christian” would be useless in identifying posts of
the second rumor.

In the literature of social and psychological stud-
ies, both rumors can be categorized as wedge-driving
rumors [2] that feed on hate. In the user posts, we
find contents that express hostility similarly, such as “fix
stupid” and “pure insanity”. These similar expressions
are useful in identifying future wedge-driving rumors,
which may or may not be related to the two topics.
Therefore, we aim to discover the topic-independent
patterns in user posts.

2.2 Working of the Framework In order to build
the framework that can exploit prior labeled data, two
main issues remain to be solved. An ideal case for
selecting topic-independent features is that we group ru-
mors by their categories and find discriminative features
for each category, such as hatred features for wedge-
driving rumors, worrying features for anxiety-arising
rumors, and astonishment features for atrocity rumors.
However, rumor categories are unavailable. In order to
solve the problem, we adopt structure learning-based
feature selection in this work. Motivated by recent
research on unsupervised feature selection [11], for an
unlabeled dataset, we can effectively select features by
preserving the intrinsic structure of data. In our work,
the structure is the rumor category, and within the same
category, rumors trigger similar contents.

As conventional practices in unsupervised feature
selection approaches, the selected features can then be
used for training a classifier. However, the supervised
information, i.e., the rumor labels, has not been con-
sidered in the feature selection process, which leads to
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Figure 1: An illustration of the learning procedure of
the proposed framework. The framework consists of
three components: inferring rumor categories (structure
learning), selecting discriminative features, and learning
the rumor classifier.

the issue that the selected features may fail to capture
the key knowledge of rumors. A more coherent method
is to integrate the feature selection and classification
processes into a unified framework.

Figure 1 illustrates the three components of the
proposed framework. The framework is built upon
sparse representation learning methods, which simul-
taneously infers the category structure of rumor data
and selects discriminative features. The rumor label is
also jointly utilized by supervising the feature selection
process which results in an optimal rumor classifier.

2.3 Problem Definition D = {d1,d2, . . . ,dm} ∈
Rm×n is the data matrix with each row di ∈ Rn being a
data instance and each column fi ∈ Rm being a vector
of each feature. y ∈ {−1, 1}m is the label vector for
training data. yi = 1 if i refers to a rumor, and
otherwise, yi = −1. Given the data matrix D, label
vector y, we aim to learn a predictor that accurately
classifies rumors and non-rumors based on the social
media posts.

3 Cross-Training for Emerging Rumor
Detection

In this section, we first introduce how we select features
to allow for the cross-training. As mentioned earlier, the
two subtasks are (1) clustering data according to rumor
categories and (2) selecting features that are effective
across topics within a category.

3.1 Proposed Framework Motivated by recent re-
search on feature selection [11], we start with a matrix
factorization formulation:

min
U,V

1

2
||D−UVT ||2F ,

where || · ||F denotes the Frobenius norm. The original
data matrix is decomposed into two factors, U ∈ Rm×k
is the low-rank representation of users, and V ∈ Rn×k
is the low-rank representation of features with k �
n. The factorization separates data from feature by k

latent factors, which enables the clustering and feature
selection to be jointly performed. In order to force the
user factor U to be cluster indicators instead of latent
factors, we impose a constraint on U:

(3.1)
min
U,V

1

2
||D−UVT ||2F ,

s.t. U ∈ {0, 1}m×k,U1 = 1

where 1 is a vector with all elements equal to 1. The
m rows are then clustered into k clusters. However,
due to the constraint on U, it is difficult to solve the
problem in Eq.(3.1). Motivated by research on spectral
clustering [27], we introduce an orthogonal constraint
on the rows to relax it. Eq.(3.1) can then be rewritten
as follows:

(3.2)
min
U,V

1

2
||D−UVT ||2F ,

s.t. UTU = I,U ≥ 0

where I is an identity matrix and thus rows in U are
orthogonal to each other.

The orthogonal constraint ensures that data in-
stances are clustered into different rumor categories.
For each rumor category, we aim to select descriptive
features. To this end, we try to select key features
while force the unselected features to be zero. In the
literature of sparse learning and feature selection, it can
be done by imposing an `2,1-norm [9]. Motivated by
recent studies on embedded feature selection [28], we
rewrite Eq.(3.2) as follows:

(3.3)
min
U,V

1

2
||D−UVT ||2F + α||V||2,1,

s.t. UTU = I,U ≥ 0

where the `2,1-norm regularizer selects features that best
preserve the structure of clustering U. α controls the
extent of sparsity.

Through solving Eq.(3.3), we can obtain the low-
rank representations. However, the labeled data that
are available for distinguishing rumor and non-rumor
content has not been exploited. The resultant represen-
tation would fail to capture the key signal that reveals
the appearance of rumors of a category. Motivated by
Collective Matrix Factorization-based relational learn-
ing [24, 30], we introduce a classification loss term in
the objective function. We adopt the hinge loss used
in Support Vector Machines (SVMs), and Eq.(3.3) is
reformulated as:
(3.4)

min
U,V,w

1

2
||D−UVT ||2F + α||V||2,1 + β

m∑
i=1

h(uiV
Twyi),

s.t. UTU = I,U ≥ 0



where h(·) is the hinge loss and β controls the extent
that the training information influences the feature
selection and structure learning processes. uiV

T is the
reconstructed formulation of a data instance. w is the
model parameter of the SVMs, and uiV

Tw denotes
the prediction with given low-rank representations. To
make it convenient for optimization, we adopt the
smoothed hinge loss [19] for h(·) as follows:

h(θ) =


1
2 − θ θ ≤ 0
1
2 (1− θ)2 0 < θ < 1
0 θ ≥ 1

where the loss function is smoothed when θ = 1,
and the corresponding optimization task of computing
its gradient is more tractable. The gradient of the
smoothed hinge loss is

(3.5) h′(θ) =

 −1 θ ≤ 0
θ − 1 0 < θ < 1
0 θ ≥ 1

Next, we will introduce how to optimize the objec-
tive function in Eq.(3.4) efficiently.

3.2 Optimization The objective function in
Eq.(3.4) is not convex w.r.t. all three variables, i.e.,
U,V, and w. However, Eq.(3.4) is convex in each of
the three variables separately. Hence, we update each
of them by fixing the other two iteratively.

3.2.1 Modeling Rumor Category First, we intro-
duce how U can be updated by fixing V and w. By
removing terms that are irrelevant to U, Eq.(3.4) can
be reformulated as follows:

(3.6)
min
U

1

2
||D−UVT ||2F + β

m∑
i=1

h(uiV
Twyi).

s.t. UTU = I,U ≥ 0

The problem in Eq.(3.6) is an orthogonality con-
strained optimization problem. The problem can be
solved in the Crank-Nicolson scheme. Following [29],
U can be efficiently updated as follows:

(3.7) U← (I +
τ

2
Q)−1(I− τ

2
Q)U,

where τ is the step size and Q is a skew-symmetric
matrix, which leads to the descent along geodesics and
inside the feasible set. Q can be constructed as

Q = [U,G][G,−U]T

= UGT −GUT ,

(3.8)

where G is the gradient of the optimization objective in
Eq.(3.6). Since both terms in Eq.(3.6) are convex, the
gradient can be obtained with Eq.(3.5) as

Gi,j = [UVTV −DV]i,j + β[h′(uiV
Twyi)yiw

TV]j ,

where [·]i,j is the (i, j) entry of the matrix and [·]j
is the jth entry of the vector. A problem of directly
updating Eq.(3.7) is that the time complexity is high,
since the inverse operation dominates the calculation
when m is large. In order to solve the problem, we
rewrite the objective function as follows by applying the
SMW formula [23, 29]:
(3.9)

(I +
τ

2
Q)−1(I− τ

2
Q)U

= (I +
τ

2
[U,G][G,−U]T )−1(I− τ

2
[U,G][G,−U]T )U

= U− τ [U,G](I +
τ

2
[G,−U]T [U,G])−1[G,−U]TU

By reformulating the objective function in Eq.(3.7),
only the inverse of (I + τ

2 [G,−U]T [U,G]) needs to be
calculated, which takes O(k3). Since k is the number
of clusters and normally k � n and k � m, the
inverse operation is much easier to solve and no longer
dominates the computation.

In order to find the optimal step size τ in Eq.(3.7),
we first introduce the Armijo-Wolfe condition [8]

(3.10) L(Uτ ) ≤ L(Uτ=0) + ρ1τL′(Uτ ),

L′(Uτ ) ≥ ρ2L′(Uτ=0),

where Uτ is the trial point of gradient descent given
a specific τ , and Uτ=0 is the value by setting τ to
zero. ρ1 and ρ2 are two parameters satisfying that
0 < ρ1 < ρ2 < 1 [13]. L(·) is the loss function in
Eq.(3.6), and L′(·) is its gradient.

The optimal value of τ can be obtained through
curvilinear search [4] with Armijo-Wolfe condition in
Eq.(3.10), and details are presented in Algorithm 1.

Algorithm 1 Curvilinear Search for τ

1: Initialize τ > 0
2: Until Eq.(3.10) is satisfied
3: Set τ ← τ

2
4: Return τ

3.2.2 Selecting Features Now we are introducing
how V can be updated given fixed U and w. The
optimization function of V can be formulated based on
Eq.(3.4) as
(3.11)

min
V

1

2
||D−UVT ||2F + α||V||2,1 + β

m∑
i=1

h(uiV
Twyi),



where constraints on U are removed. The objective
function in Eq.(3.11) is similar to that of multi-task
feature selection [16]. The update rule for V can be
obtained by taking the derivative and setting it to zero.
The derivative can be formulated as

(3.12) V−DTU+αCV+β

m∑
i=1

(yih
′(uiV

Twyi))wui,

where C is a diagonal matrix where Ci,i = 1
2||vi||2 .

C is constructed to obtain the derivative of the `2,1
regularization term of V [25]. By setting Eq.(3.12) to
zero, the update rule of V can be written as:
(3.13)

V← (I + αC)−1(DTU− β
m∑
i=1

(yih
′(uiV

Twyi))wui).

3.2.3 Learning Rumor Classifier Finally, we will
introduce how the rumor classifier can be obtained given
fixed U and V. By removing terms that are irrelevant
to w, Eq.(3.4) can be rewritten as

min
w
β

m∑
i=1

h(uiV
Twyi) +

γ

2
||w||22,

where we add a regularization term to avoid over-fitting,
and γ to control the complexity of w. Since both terms
are smooth and convex, the update rule of w can be
written as

(3.14) w← w − η
(
β(yih

′(uiV
Twyi))VuTi

)
,

where η is the step size and can be efficiently estimated
with backtracking line search [15].

3.2.4 Analysis Given update rules of U, V and w,
the problem can be efficiently solved by a Stochastic
Gradient Descent algorithm (SGD). SGD solves the
optimization problem in the hill-climbing scheme by
seeking the stationary point. The optimization process
can be found in Algorithm 2. U, V and w are updated
alternatively from line 3 to line 5. Since the objective
function decreases for each of the subproblems, and
Eq.(3.4) has lower bounds such as zero, Algorithm 2
converges. As mentioned earlier, the inverse operation
in Eq.(3.9) can be quickly done in O(k3). The inverse
operation in Eq.(3.13) can be solved in O(n) since
(I+αC) is a diagonal matrix. Therefore, the complexity
of one iteration (lines 3-5) is dominated by the matrix
multiplication, which can be efficiently solved since the
data matrix D obtained from social media contents is
usually sparse. In addition, the experimental results on
our datasets show that the algorithm often converges in
less than 20 iterations.

Algorithm 2 Early Detection of Emerging Rumors

Input: Data matrix D, label vector y, maximal
number of iterations I

Output: U, V, w
1: Generate U, V and w randomly
2: For i=1 to I do
3: Update U by Eq.(3.9)
4: Update V by Eq.(3.13)
5: Update w by Eq.(3.14)
6: If convergence Break
7: End For
8: Return U, V, w

4 Experiments

In this section, we conduct experiments to assess the
performance of the proposed framework, namely Cross-
topic Emerging Rumor deTection (CERT), with real
world social media data. In particular, we aim to answer
the following two questions through experiments:

• How effective is CERT in detecting emerging ru-
mors in social media by leveraging prior labeled
data of rumors?

• How quickly can CERT detect emerging rumors
after rumors start being spread with only prior
labeled data of rumors?

We begin by introducing how we obtain the real-
world social media data and the corresponding ground
truth. Then we introduce the experimental setup and
baselines for comparison. Based on the experimental
results, we finally investigate the effectiveness and the
earliness of CERT on rumor detection.

4.1 Datasets Over 200 million posts are posted per
day on Twitter2 and the popularity has made Twitter
a testbed for rumor detection research [18, 21, 33].
In this work, we aim to collect a large dataset that
includes tweets about all prior rumors within a certain
period. Following [18], we leverage Twitter Search API3

to retrieve tweets of interests by compiling queries with
a fact-checking website.

In order to validate and debunk unverified in-
formation, several fact-checking websites have been
developed. Verification of rumors on fact-checking
websites is mainly run by professional editors and
trusted information sources. Though fact-checking sites
may cover only a small portion of rumors in social
media, the identified rumors offers us valuable resources

2https://blog.twitter.com/2011/200-million-tweets-per-day
3https://dev.twitter.com/rest/public/search



to evaluate rumor detection algorithms. In this work,
we choose Snopes4 to obtain ground truth, which is the
top rumor reference site according to Alexa5. In order
to obtain non-rumor posts pertaining to the same topic,
we extract keywords in regular expressions as queries to
retrieve posts.

With queries generated from 252 rumors from June
30th to July 11th, we collect 9,918 tweets and hire two
human annotators to manually verify that they are
rumors. The annotators classify a tweet by reading
the content and referring to the Snopes article. The
inter-judge agreement over all data instances achieves
a high Cohen’s κ score 0.93, which demonstrates the
annotation accuracy. An expert makes the final judge
when annotators disagree with each other. The resul-
tant dataset contains 1,618 rumor instances and 8,300
non-rumor instances.

4.2 Experimental Settings We follow conventional
settings [18] to evaluate the performance with Precision,
Recall, and F-measure. All other parameters are set
with cross-validation based on a holdout dataset. Next,
we will introduce methods that we use to compare with
CERT. First, we aim to investigate how effective is
CERT in detecting emerging rumors with the historical
rumors. Since CERT jointly clusters rumors, selects
features and trains a classifier, first, we introduce three
variants of the proposed method to validate different
aspects of CERT:

• Pooling trains the classifier on the prior training
data directly without clustering data or selecting
features, and we adopt the linear-SVM as the
classifier. As shown in Figure 1, the way of CERT
to model prior labeled data is to cluster them
into different rumor categories. On the contrary,
Pooling directly learns a classifier with all prior
labeled data. Hence, Pooling is used to validate the
necessity of structure learning and feature selection.

• Elastic Net trains the classifier by imposing a s-
parsity regularization term to select features. Pool-
ing aims to evaluate structure learning and feature
selection as a whole, while Elastic Net only tests
the effectiveness of feature selection. Elastic Net
aims to learn a sparse classifier with fewer selected
features without clustering data instances into
rumor categories. So the result can be used to
validate the necessity of structure learning.

4http://www.snopes.com/
5http://www.alexa.com/topsites/category/Society/Folklore/
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• KM SVM first clusters data instances and trains
a classifier for each cluster. KM SVM is designed to
evaluate the method that separately clusters data
and trains classifiers. Since we propose to unify
the data clustering and classifier learning processes,
the result of KM SVM can be used to validate the
necessity of the joint learning framework. Given a
test instance, we first find the closest cluster center
and apply the corresponding classifier of the cluster
to determine the label of the test instance.

Several methods have been proposed to identify
unverified information from social media. In order
to compare with the state-of-the-art approaches, we
include the following methods:

• FE LL [18]: Rumors that are widespread in social
media usually share similar patterns in terms of
content and diffusion. In order to capture the
patterns of rumors, Qazvinian et al. implement
a method to extract relevant features that capture
the patterns of rumors. Based on the extracted fea-
tures and labeled instances, classifiers are trained
to predict rumors. The adopted classifier is a `1-
regularized log-linear model.

• LK RBF [21]: A problem that hinders the early
detection of rumors is the data scarcity: only few
comments are available and they are scattered in
different discussion threads. In order to relieve
the scarcity, a possible way is to combine these
individual tweets from different threads together
as a “conversation”. Sampson et al. propose
several methods to combine tweets and try different
supervised learning methods to classify rumors. We
choose the URL-based method to combine tweets
and the RBF kernel method as the classifier, which
achieve the best performance in that work and also
on our dataset. LK RBF is effective for detecting
rumors in the early stage, and the comparison can
be used to evaluate the earliness of CERT.

We design two experiments to show the perfor-
mance of CERT. In the first experiment for studying
the effectiveness, we arrange rumors in the chronological
order by the starting time, and we take the first 50% for
training and the rest for testing. Therefore, all methods
predict new rumors with historical training data and the
experiment shows the performance on cross-training. In
the second one, baseline methods are trained on the
rumors for evaluation, and the training data is added
in the chronological order by the generation time. The
second experiment shows the minimum time that could
be saved by CERT regardless of the annotation.



Table 2: Performance on detecting emerging rumors.

Approaches Precision Recall F-score
Pooling 76.13% 60.20% 67.23%
Elastic Net 79.56% 65.62% 71.92%
KM SVM 70.12% 72.55% 71.31%
FE LL 86.29% 85.33% 85.81%
LK RBF 80.16% 64.62% 71.56%
CERT 92.18% 88.15% 90.12%

4.3 Effectiveness Analysis The comparison of the
performance is shown in Table 2. Precision shows
how accurate rumors can be detected, recall shows
how sensitive the models are to rumors, and F-score
(F-1 measure) is the harmonic mean of precision and
recall. Based on the results shown in Table 2, we draw
the following observations. The three variants, i.e.,
Pooling, Elastic Net, and KM SVM, cannot effectively
detect emerging rumors with historical training data.
Imposing a feature selection is useful since Elastic Net
outperforms Pooling. Disjointly clustering and detect-
ing rumors with KM SVM does not achieve comparable
results, which proves the necessity of a coherent method.

Among the two rumor detection methods, i.e.,
FE LL and LK RBF, FE LL achieves the better results
and is the runner-up among all methods, showing
that feature engineering helps detect rumors better.
The feature engineering process can be integrated into
CERT easily. CERT outperforms existing methods by
jointly grouping data instances, selecting features and
learning classifiers. The result empirically demonstrates
that CERT is effective in exploiting knowledge in
historical training data.

4.4 Earliness Analysis In the second experimen-
t, we allow existing rumor detection methods to be
trained on rumors that are for evaluation. Through
incrementally adding training data in the chronological
order, we will be able to estimate the time that can
be saved by utilizing historical data. The results on
earliness are shown in Figure 2. Note that, CERT is
trained only with historical data, meaning that when
the other two methods are trained on more labeled data
of the emerging rumor, CERT is not retrained and only
exploits the prior labeled data.

At an early stage with 10% to 50% training data,
LK RBF outperforms FE LL regarding F-score, show-
ing that linking and combining posts with the same
URLs alleviates the data scarcity problem. With more
data being generated, the advantages of linking data
become diminishing, and FE LL outperforms LK RBF.
The result shows that FE LL is more effective with

abundant training data, while LK RBF is more useful
for an emerging rumor. However, the best baseline
achieves the result of CERT with 70% training data,
which has an average time lag of 22 hours. Therefore,
we empirically prove that the use of CERT not only
yields effective classifiers but also finds emerging rumors
faster than existing approaches.

4.5 Rumor Categories An intermediate task is to
cluster rumors into categories, which is helpful for the
detection since rumors of the same category trigger
similar reactions [6]. To help understand the clustering
results, we show three example categories and the
corresponding top rumors in the category. The results
are illustrated in Table 3, including wedge-driving
rumors, dread rumors and curiosity rumors. The
name of the three clusters is acquired through manual
checking. We see that rumors are clustered cohesively,
and the cohesiveness explains how it facilitates selecting
key features from sparse data.

5 Related Work

The study of rumor can be traced back to 1940s [1],
when psychological studies try to discover the driving
forces of rumors [2]. Since then, story importance and
information ambiguity have been intensively investi-
gated for understanding rumor spreading [3, 20]. For
example, Anthony first introduces to use anxiety to
approximate the rumor importance, since it is easier
to model the sentiment of readers. Rosnow introduces
the concept of personal involvement as an additional
variable related to user anxiety. However, the efforts
on studying anxiety of social media users for detecting
rumors are very few. Oh et al. utilize anxiety on
social media sites for understanding the diffusion of
rumors [17], and our work first introduces to exploit
it as a topic-independent feature, which paves the way
for effectively reusing historical data.

In order to combat the widespread misinformation
in social media, supervised learning approaches have
been used [31] to detect rumors and the spreaders [14].
The creation and spread of rumors have first been
studied on Twitter. Since it is crucial to detect rumors
as early as possible, Qazvinian et al. employ a fea-
ture engineering approach to distinguish misinformation
from Twitter’s content stream [18]. Observing rumor
posts usually arise inquiries, Zhao et al. compile
regular expressions to detect topic with concentrated
questions [33]. Our recent work studies linking dis-
tributed discussion snippets to alleviate the cold-start
problem [21]. All aforementioned approaches depend on
a labeled dataset, which unavoidably introduces a time
lag for annotation. Meanwhile, systems have also been



Table 3: Three example categories of rumors detected by CERT.

Wedge-Driving Rumors Dread Rumors Curiosity Rumors
President Obama claimed that
Americans would be better off
under the martial law during an
interview with Washington Post.

Police in assessed that an en-
counter with three men at Silver
Lake Park was an attempted
human trafficking incident.

A North Carolina provider of
mental health services is named
“Nutz R Us.”

A Black Lives Matter protest in
Memphis obstructed I-40, lead-
ing to the death of a critically ill
child transplant patient.

A “purge” event is planned for 9
July 2016 in Baton Rouge kill all
police officers.

A fisherman captured a 3,000
lb. great white shark out of
the waters in the Great Lakes
Michigan.

A police officer shot two-year-old
Malik Gibson after mistaking his
pacifier for a gun.

NASA has warned of imminent
disaster due to the trajectory of
Nibiru.

Researchers sequenced octopus
genomes and discovered alien
DNA.

developed to visualize and track known rumors [12, 22].
Through representing data via intuitive visualization,
experts can observe and understand how rumors spread
from node to node, so that they are enabled to supervise
the learning procedure of rumor classifiers with their
domain knowledge and expertise [5, 32].

Our work is also related to feature selection. Fea-
ture selection aims to find the subset of features that are
optimal for a learning task [11]. A common method is
to impose a sparsity regularization term. For example,
`1-norm leads to a sparse representation of variables
in a regression task [26] and `2,1-norm jointly leads to
sparse models and preserves the intrinsic structure of
data [34]. Since the intrinsic data structures may remain
to be discovered, such as the prior rumor data, recent
studies have investigated simultaneously characterizing
the structure and selecting features. Du et al. propose
to preserve global and local structure [7], and Wang
et al. integrate feature selection into a clustering
process [28]. However, since our ultimate goal is to learn
a classifier, these methods are not applicable.

6 Conclusion

Circulating online rumors have become a key issue
for today’s social media sites. They may result in
catastrophic effect both online and offline quickly. After
they go viral, it is extremely difficult to eliminate their
existence. In order to detect rumors at an early stage,
we propose to directly train a classifier based on readily
available labeled data from prior rumors. Motivated
by traditional studies on rumors, we introduce a novel
framework that jointly clusters data, selects features,
and trains classifiers. An optimization approach is also
presented to solve the problem efficiently. The proposed
framework, CERT, largely breaks the bottleneck of the
time lag from annotating datasets. Experimental results
illustrate the effectiveness and earliness of CERT on

10% 20% 30% 40% 50% 60% 70% 80%

0.65

0.7

0.75

0.8

0.85

0.9

Percentage of Training Data

F
−S

co
re

 

 

FE_LL
LK_RBF
CERT

Figure 2: Performance of traditional approaches with
chronologically additional training data, while CERT
uses the historical data.

real-world data.
The same rumor may outbreak in miscellaneous

websites. For example, after being created, a political
rumor may be spread on Twitter, Facebook, and even
news media simultaneously. It would be interesting
to investigate the potential impact of jointly modeling
cross-network information. Besides, a social media
rumor may consist of contents other than text, such as
short videos and images. In the future, we would like to
utilize cross-modal information to further facilitate the
detection of rumors of all sorts.
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