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Abstract

Relational learning has been proposed to cope with the
interdependency among linked instances in a network, and it
is a fundamental tool to categorize social network users for
various tasks. However, the emerging widespread of misin-
formation in social networks, information that is inaccurate
or false, poses novel challenges to utilizing social media data.
Malicious users may actively manipulate their content and
characteristics, which easily lead to a noisy dataset. Hence,
it is intricate for traditional relational learning approaches
to deliver an accurate predictive model in the presence of
misinformation. In this work, we precisely focus on the
problem by proposing a joint framework that simultaneously
constructs a relational learning model and mitigates the
effect of misinformation by restraining anomalous points.
Empirical results on real-world social media data prove the
superiority of the proposed approach, Relational Learning
with Misinformation (RLM), over traditional approaches on
modeling social network users.

1 Introduction

Relational learning (RL) utilizes relationships between
instances manifested in a network to improve the pre-
dictive performance of various network mining tasks.
The triumphant applications of RL have been witnessed
in a myriad of domains, such as social networks (e.g.,
Flicker), language networks (e.g., Wikipedia), and cita-
tion networks (e.g., DBLP). The vast amount of social
media content, ranging from daily chatter, conversa-
tions to information sharing and news reports, together
with automatic modeling of the content information,
allow for an insight into the public opinion that has
been utilized for recommender systems [8], targeted
advertising [20], and even predicting the stock price [2]
and election results [21].

However, due to emerging challenges brought by
malicious social media users, it is increasingly risky to
depend on social media data for decision making. Most
social media platforms are open to register and easily
accessible, which enables malicious users to spread
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misinformation while easily disguise their accounts. For
example, thousands of bot accounts were found to
intentionally spread misinformation during the 2016
U.S. election'. To complicate the problem, in order to
avoid being detected, they copy legitimate content from
normal users [24] and farm links with other people [11].
The manipulated content and links camouflage the
malicious users that further lead to a polluted dataset on
which decision makers may rely to design public policies.

In this work, we precisely focus on the computa-
tional challenge brought by emerging misinformation
in social media data. Existing efforts in this area
mainly focus on a deletion-based way to solve the
problem: building a detection model to identify polluted
points, removing them from the data, and learning a
predictive model with the refined dataset. However,
the ground truth data for the malicious users itself can
be very difficult to obtain. Hence, a deletion-based
method is limited by the availability of additional label
information. In real applications, for sake of simplicity,
noisy data are often directly used. Therefore, it would
be appealing if the negative effect of noisy data instances
can be seamlessly mitigated.

The task of learning a predictive model in the
presence of misinformation is particularly difficult, if not
impossible, especially when we are lacking availability
of labels of malicious users. In order to tackle the
challenge, we assume that the real performance can be
tested on a holdout dataset, and the optimal perfor-
mance can be achieved by selecting only the unpolluted
data instances. Therefore, an optimal set of model
coefficients can be achieved by exhausting all possible
combinations of instances. Given the size of the selected
instance set, the task is a NP-hard problem due to the
combinatorial property. Since the size is also a variable
and the size of a dataset is usually very large, it is
computationally unfeasible to directly search for it. To
this end, we propose a novel relational learning method,
Relational Learning with Misinformation (RLM), to
identify the set of instances in polynomial time.

In order to tackle the computational challenge, we
utilize the social network structure to facilitate the
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search for optimal coefficients. As revealed in social
identity theory [10], the membership of social commu-
nity is likely to indicate the similar identity shared
among all community members, and the community
structure is relatively less susceptible to be affected
by malicious behaviors. Hence, we propose to model
the community structure with an adaptive group Lasso
approach to solve the instance selection problem for
relational learning. The main contributions of the work
are summarized below:

e We study a novel problem in relational learning,
i.e., relational learning in the presence of misinfor-
mation, and formally define the task;

e Utilize the social network structure to tackle the
challenge of computational expense, and propose a
novel optimization framework;

e Suggest mathematical formulations to solve the
proposed optimization problem efficiently; and

e Conduct extensive experiments to evaluate the
proposed framework on real-world online social
media datasets against competitive baselines.

The remainder of the paper is structured as follows.
In Section 2, we introduce the problem and formally de-
fine the computational task. In Section 3, we introduce
our proposed framework as well as the optimization
method and theoretical analysis. In Section 4, we
conduct experiments on real-world social media datasets
to evaluate the proposed method. We introduce related
work in Section 5, and conclude the paper and present
future work in Section 6.

2 Problem Statement

Given a set of social media users, and consider V €
R™*™ ig the attribute matrix where m is the number
of users and n is the number of features, P € R™*™
denotes the adjacency matrix manifested by the social
network structure where P; ; = 1 indicates that user ¢
follows j and it equals to 0 otherwise, t € {0,1}™ is a
label vector represents whether a user contains a certain
social tag. Given label information for a subset of users
t € {0,1}™, due to the influence of misinformation,
the label vector is noisy and thus there are k instances
mislabeled, we aim to predict labels for the rest my.
unlabeled users where m = my, + my.. More formally,
the problem is stated as follows:

Input
a user-attribute matrix V', an adjacency matrix P
and the label information y'™ = {0,1}™" for a

subset of my, users.

Output
labels of test users, t"t = {0,1}™*, where my, is
the size of testing data.

A mislabeled instance indicates that the label fails
to reveal the true identity of the user. In the process of
learning, we posit the existence of misinformation and
aim to select top k instances that are not mislabeled to
build an optimal predictive model. The social labels
can be obtained from different sources on different
platforms. For example, Flickr users can join different
groups and BlogCatalog users are able to subscribe and
add tags for themselves. The group memberships and
interest tags can be extracted as labels.

3 Proposed Approach: RLM

In order to illustrate our intuition, we illustrate the
framework of classic relational learning and the pro-
posed approach in Figure 1. A conventional practice
of dealing with social media network data is to con-
struct a classifier with the data matrix extracted from
users. Considering potential negative effect brought by
misinformation, we argue a model with better accuracy
can be obtained by selecting a subset of instances
for training. As shown in Figure 1(b), an additional
instance selection module is introduced.

Social networking platforms allow users to freely
post content information, which reveals the preference
and interests of a user and thus could be utilized to
characterize the user in relational learning. To this end,
a classifier can be constructed by minimizing:

1 2
(3.1) SIIVw — y1,
where V. € R™*" is the data matrix, and m is the
number of users and n is the number of textual features.
Linear regression is adopted here for generality, and
w € R" represents the model coefficients that need to
be optimized. y € R™ is the label vector of training
data. Throughout the paper, we focus on a binomial
classification setting which can be easily extended to
the multinomial case.

In order to avoid over-fitting, a regularization term
is often adopted to control the model complexity. The
model can then be formulated as:

(G2)  guinlVe -yl + 2wl

where A1 controls the cutoff between model complexity
and accuracy. A larger \; leads to a more simplified
model. The formulation achieves an optimal w through
minimizing the training error. Considering the negative
effect of misinformation, we introduce to integrate
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Prediction Results

(a) Relational learning with social media

users.

(b) Relational learning with selected instances.

Figure 1: Illustration of comparison between traditional relational learning and the proposed approach with

instance selection.

A classic relational learning method directly constructs a classifier with available label

information; while the proposed framework first removes noise from the label information by actively selecting

instances, upon which a classifier is built.

instance selection as,

1 A
. 1
ming > ei(View — i) + Fiwl
(3.3) i=1

subject to Zci =k,ce{0,1}",

where we introduce an instance selection term c €
{0,1}™ to select k instances to only have influence on
the classifier, and k is a predefined budget. Due to the
combinatorial nature, it is an NP-hard problem which
can be difficult to solve. It could also be laborious
to find an optimal k. In order to cope with the
computational challenge, we try to leverage the social
network structures.

On a social networking site, users can be organized
by assorted social groups and communities. Since
the community structure is often induced from the
homophily or proximity relationship between users, it
provides a valuable perspective of user profiles [10].
Here, we posit the correlation between social commu-
nity structure and the information quality that, users
belonging to the same group are more likely to provide
content of similar quality. The community structure
is also more robust to the link farming of malicious
users: randomly establishing a link with a legitimate
user can be relatively easy, while establishing links with
multiple users belonging to the same community can be
very difficult.

Next, we define an index tree to denote the social
community structure for brevity of presentation,

DEFINITION 1. Index tree: Let T denote a
tree of depth d, where mnon-leaf mnodes represent

social communities and leaf nodes are users.  Let
T, = {Gy,G4,...,G..} denote the nodes on layer
1, where ng = 1 and n; is the number of nodes on
layer i. Given 1 < d, G;- represents j" group on
the it" layer. GY = {1,2,...,m} contains indices
of all users. In order to maintain a tree structure,
nodes should satisfy the following conditions: 1) Nodes
on the same layer share mo indices with each other
(G;HG}C = @,VZ = 0,...,d,j 75 k‘,] < ni,k < Tli),' 2)
Given a non-root node G;-, we denote its parent node
as Gt (GE C Gigt 1 <i<d).

In order to obtain such a group structure, we select
a hierarchical community detection method, namely
Louvain [1], where maximum modularity is used to
optimize the group structure. The code is available?.

Given a social community structure, the task of
instance selection can boil down to community selec-
tion. Though the search space is significantly reduced,
exhausting all possible combinations can also be time-
consuming. To this end, we further relax the constraint
on c¢ and rewrite the optimization objective in Eq.(3.3),
(3.4)

. 1 m )\1 d n;
mlH*ZCi(Vi,*W*Yi)QJr3|\W||§+>\2ZZHCG;||2

w,C
i=1 i=0 j=1

subject to Zci =k,
i

where we relax the instance selection vector ¢ to be
a non-binary vector. In order to make the vector

h
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more “binary” to align it with the objective of instance
selection, we propose to force more entries in ¢ to be
exact 0 or 1. Specifically, we integrate a structured
sparsity regularizer ||cGJ 2. A2 is used to control the

extent of sparsity. The adopted sparsity regularizer is a
tree-structured group Lasso [9),

d Uz
S5 e

i=0 j=1

(3.5)

where an fs-norm is imposed on each member of a
group, and an fi1-norm is imposed on weights of all
groups. This fo1-norm is iteratively imposed on the
social community structure in a bottom-up manner.
The combination of ¢;- and f3-norm leads to sparse
representation of c¢, while ¢1-norm determines the or-
ganization of sparsity [17]. In particular, imposing
{1-norm within each group leads to the inter-group
sparsity, i.e., weights of users in some groups are
selected to be assigned higher weights, while users in
other groups are with lower weights. Therefore, by
minimizing the training error, groups that lead to better
accuracy are selected by the sparse representation of c.

3.1 Optimization In this section, we introduce how
we optimize the problem efficiently. T'wo variables need
to be optimized in Eq.(3.4), ¢ for instance selection
and w for classifying users. The problem is not jointly
convex w.r.t. both variables simultaneously. As a
conventional practice, we alternatively optimize one
variable by fixing the other. The optimization problem
boils down to two convex optimization tasks, and we
keep iterating over them until convergence.

3.1.1 Instance Selection Here we focus on optimiz-
ing ¢ while keep w being fixed. Since the squared loss
(Vw — y;)? becomes a constant, we replace it with p,
where p; = (V;.w — y;)%. The objective can then be
reformulated as:

1 m d n;
ming deipit A Y lleg:
i=1

i=0 j=1

2
(3.6)
subject to Zci =k,

where the regularizer ||w||3 that is fixed here is also
omitted. It is easy to prove that Eq.(3.6) is strongly
convex but not directly differentiable, i.e., it is convex
and non-smooth with respect to c. In order to find the
solution for the optimization problem in Eq.(3.6), we
reformulate the problem as follows:

d n;
1 i
(37) 62,(0) = argmin Jle —x/?+ 00 3" D llegs 1

i=0 j=1

p, '
Py
ity constrained optimization problem is transformed
to a Moreau-Yosida regularization problem with the
euclidean projection of ¢ on to a vector x [13]. The
new formulation is continuously differentiable and it
admits an analytical solution [16]. Given a proper
A2, the optimal ¢ € R™ can be obtained in an
agglomerative manner, which is shown in Algorithm 1.
In the algorithm, the superscript of c is used to denote
the layer of the tree, meaning that the output of
the algorithm is c®. The bisection method can be
implemented to find the optimal ;. Empirically, A,
11 (0)113
Sigmni’
Then we use ¢x,(—I (0)) to test whether A, achieves
the certain threshold. When ¢y, (=1 (0)) = 0, which
means Ao is large enough to generate a trivial solution,
we start looking for the lower bound as follows:

(3.8)

where x € R™ and x; = Therefore, the equal-

where I(c) = L||c —x||2.

can be initialized as 3

ower i % /\(Z)
A7 = max (AN =

ﬂgw(*l/(o)) # 0}

otherwise, if ¢y, (—1'(0)) # 0, we start looking for the
upper bound as follows:
(3.9)

ST = min{ AP NS = 2080, 7, 0 (<1 (0)) = 0}

Algorithm 1 Solution of Moreau-Yosida Regulariza-
tion
Input: {c,G, A2}
Output: c°.
1: Set ¢t = x,
2: for i = d to 0 do:
3: for j =1 ton; do:

4: Compute:
: i+1
0 if legill2 < As,
J
i Ly
ct,, = lleZi lla=X2 .
G G i+1 : i+1
J WCG? Zf HCGi, |2 >>\2,
G’ a J
J
5: end for
6:end for

In Algorithm 1, we traverse the tree in an agglomer-
ative manner, i.e., from leaf nodes to the root node. At
each node, the f5-norm of the weight ¢ can be reduced
by at most Ao as shown in step 4. After the traverse,
the analytical solution of ¢ can be achieved.



3.1.2 Predictor Training When c is fixed, the
problem only depends on w. We reformulate the
objective function as follows:
3.10 _1y A 2 A2
( . ) Ew = 2;%( z,*w_yz) + 9 HW||2
Therefore, the problem is reduced to an ¢ regu-
larized weighted linear regression problem, which is to
minimize the cost ey. Since social media users and
their corresponding contents may be massive, a scalable
optimization method is needed. Here we use Stochastic
Gradient Descent (SGD) [3]. Since Eq.(3.10) is convex,
the corresponding gradient can directly be obtained as:

m
Oew

SGD is scalable since data examples can be updated
in parallel [27]. Detailed discussions about the perfor-
mance can be found in Section 4.

3.2 Time Complexity Analysis Here we analyze
the time complexity of the algorithm. The com-
putational costs include computation of ¢ and w.
The computational cost for ¢ comes from estimating
the Moreau-Yosida regularization problem, which takes
PR > 521 |GY]. The computation of w is a standard
{5 regularized regression problem, which can be acceler-
ated with the parallel implementation. The calculation
of Louvain method could also speed up and it needs
to be done only once as preprocessing [1]. Since the
optimization is conducted in an alternative manner
and both sub-tasks are convex, both procedures will
monotonically decrease. In addition, since the objective
function has lower bounds, such as zero, the above
iteration converges.

3.3 Convergence Analysis Here we analyze the
convergence condition. Since the optimization is con-
ducted in an alternative manner and both sub-tasks are
convex, both procedures will monotonically decrease. In
addition, since the objective function has lower bounds,
such as zero, the above iteration converges.

4 Experiments

RLM is proposed to seamlessly mitigate the negative
effect of misinformation in a relational learning method.
In this section, we aim to answer two research questions:

e How effective is the proposed method compared
with other approaches in terms of classification
accuracy?

e In the presence of misinformation, can the proposed
RLM identify and downweight the anomalous train-
ing instances?

To answer the questions, we conduct experiments
on two real-world social media datasets. Next, we
will introduce the adopted datasets and experimental
settings.

4.1 Datasets We conduct experiments on two real-
world social media datasets that are publicly avail-
able3. Table 1 illustrates some statistics about the
two datasets. The users are randomly sampled from
the two websites. Assorted features are extracted,
such as text and scalar features like age. Following
previous work [18, 22], we adopt the user interest tags in
BlogCatalog and group memberships in Flickr as labels.

Table 1: The statistics about employed datasets.

# of Instances # of Labels # of features
BlogCatalog | 5198 6 8189
Flickr 7575 9 12047

4.2 Baseline Methods and Metrics Our work
focuses on classifying instances in a graph. Therefore,
we compare with state-of-the-art classification methods
with content and network information. We follow
experimental settings of graph representation learning
approaches by learning a classifier upon the learned
dimensions.

e Graph Regularized NMF': aims to utilize both con-
tent and network information to characterize at-
tributed graph nodes [4]. Based on the assumption
of homophily, connected nodes are regularized to
be predicted with similar labels. We denote the
method as GNMF.

e Robust NMF': In order to deal with the anomalous
instances in a dataset, in the area of robust statis-
tics. We adopt Correntropy Induced Metric Non-
Negative Matrix Factorization [6] which extends
NMF by incorporating a correntropy induced met-
ric to mitigate the negative effect of non-Gaussian
noise. The method is denoted as RNMF.

e Relational Learning with Social Status: Our pre-
vious work that particularly focuses on modeling
social network users by integrating social status
into the relational learning framework. We denote
the approach as RESA.

Shttp://socialcomputing.asu.edu/
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Catalog data with varying percentage of misinformation.

Catalog data with varying percentage of misinformation.

Figure 2: Comparison of different methods on the BlogCatalog dataset with Macro-F; and Micro-F; measures.
Additional training instances are randomly selected and flipped with the label.

o DeepWalk: is a state-of-the-art graph embedding
algorithm that learns distributed representations of
social network users, which reports optimal accu-
racy on the BlogCatalog and Flickr datasets [18].

o Attributed DeepWalk:  extends DeepWalk by
jointly considering the attribute information of
graph nodes and reports optimal results among
a variety of methods on learning attributed
graphs [26].

4.3 Experimental Settings To test the prediction
accuracy in terms of both precision and recall, we
adopted the Fj-measure to evaluate the performance.
Since the adopted dataset contains multiple class labels,
and the instance number of different class labels is un-
balanced, we adopt Macro-F; and Micro-F; to evaluate
the performance of different methods.

Macro-Fy is the arithmetic average of all classes,
and it can be formulated as,
(4.12) Macro—FlziZFf,

T| =

where T is the set of all identity labels and F} is the
Fi-measure of task t.

A possible problem of Macro-Fj is, since the size of
different labels varies, the task with fewer instances may
be overemphasized. Therefore, Micro-F; is adopted
to mitigate the effect. First, we calculate the micro-
averaged precision and recall:

TP
(4.13) Micro — precision = ﬁ

TP
(414) Micro — recall = m,

where #TP is the number of true positives, #FP is the
number of false positives and #FN is the number of

false negatives. Then Micro-F} is the harmonic average
of Micro-precision and Micro-recall. In addition, five-
fold cross-validation is adopted for all experiments, and
the reported results are the average of all five folds.

In order to study the effect of misinformation, we
randomly select instances in the training set to flip their
labels. The classification is conducted in a One versus
All (OvA) setting, so flipping the label means changing
the label value to the opposite, i.e., 0 to 1 or 1 to 0.
Based on the modified training dataset, we learn the
classifier and report the experimental results.

4.4 Experiments on BlogCatalog Data The per-
formance of different methods on BlogCatalog dataset
with varying percentage of flipped instances, from 4%
to 20%, is illustrated in Figure 2. The z-axis denotes
the percentage of flipped instances, which are randomly
sampled from the training set. From the experimental
results we draw following observations:

e The proposed approach RLM outperforms all base-
lines in both settings. The margin between RLM
and the runner-up models varies with different
percentage of mislabeled data instances.

e The performance of Attributed DeepWalk is the
runner-up method in both settings, which implies
that both network and content information is useful
in modeling a user.

e Since the class distribution of BlogCatalog data is
relatively less skewed, the Macro- and Micro-F;
results do not show drastic differences.

e DeepWalk has the lowest Micro- and Macro-Fy
among all six methods. Since DeepWalk inves-
tigates only the network information, the result
reveals that content information is vital in char-
acterizing social media users.



Percentage of misinformation

e GNMF  =#6=RNMF ==-RESA DeepWalk === Attributed DeepWalk =i=RLM

Percentage of misinformation

s GNMF == RNMF RESA DeepWalk == Attributed DeepWalk =li=RLM

(a) The Macro-F; measure of different methods on Flickr (b) The Micro-F; measure of different methods on Flickr

data with varying percentage of misinformation.

data with varying percentage of misinformation.

Figure 3: Comparison of different methods on the Flickr dataset with Macro-F; and Micro-F; measures.
Additional training instances are randomly selected and flipped with the label.

4.5 Experiments on Flickr Data The
performance of different methods on Flickr dataset
is illustrated in Figure 3. Based on the experimental
results, we draw following observations,

e The proposed RLM achieves the optimal Macro-F}
(Figure 3(a)) and Micro-F; (Figure 3(b)) on the
Flickr dataset.

e Different from the results of BlogCatalog, GNMF
is the runner-up for Macro-F; and RNMF is the
runner-up for Micro-F;. Based on the definitions
of Macro- and Micro-F}, the result indicates that
RNMF performs better at a class with more data
instances, while GNMF performs relatively better
on more smaller classes.

e The runner-up method for BlogCatalog, Attributed
DeepWalk, is with a relatively low Fj measure
on the dataset of Flickr. The method assumes
nodes in the same latent community are more
likely to have similar representations. However,
since label information for Flickr is the group
memberships, it is likely that users form a group
without having similar interests or similar content,
which contradicts the assumption of Attributed
DeepWalk.

e The Macro-F; measure is generally better than the
Micro-F; measure of all methods. Since we ran-
domly select training instances without considering
the class distribution, these minority classes are
more vulnerable to the flipping attacks.

4.6 Analysis for Instance Selection In this sec-
tion, we study how well the proposed RLM can identify
the mislabeled data instances. We use different methods

to select suspicious data instances that are more likely
to have been flipped. RLM downweights instances that

are more likely to contain misinformation, so the weights
are used to rank all data instances in a descending order.
RNMF also directly models the negative effect of noisy
data points, which is also adopted here. A baseline of
Random is also introduced for comparison purposes,
which selects instances at random. The results in
Figure 4 show that adopting RLM allows us to efficiently
find the mislabeled data points without checking too
many instances, outperforming the other two baselines.

5 Related Work

Relational learning focuses on classification of data
instances that are interconnected in a graph. Unlike
traditional machine learning tasks where data instances
are i.i.d., interconnections between nodes on a graph
make the i.i.d. assumption no longer holds. To model
the interconnected instances, various methods have
been proposed in the area of relational learning. The
early research aims to transform the network structure,
which is usually represented as an adjacency matrix, to
distributed feature vectors, and the graph nodes can be
classified [7, 12]. These methods focus on the one-hub
friendship, by contrast, the long-distance relationship
has been also been studied [25], where latent semantic
dimensions are assumed to be underlying connections
between users, and thus the connections can be used to
project users onto the latent semantic space.
Representation learning has also been widely ap-
plied in modeling social network data. The research can
be dated back to studies on social dimensions [19], and
recent work on network embedding also shows superior
accuracy on network clustering and classification [18].
These methods solve the problem through learning a
low-rank representation social actors, which can be
regarded as extracting features from the network [15,
14]. In order to achieve a higher accuracy, previous
studies assumed nodes are not equally weighted, and
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Figure 4: Comparison of effectiveness of different methods in identifying mislabeled instances for BlogCatalog and
Flickr datasets. Plots show the percentage of mislabeled nodes being fixed by checking instances in training data.
RLM ranks data instances with the learned weight in a descending order, RNMF ranks data with the training
loss, and we adopt a Random baseline that selects nodes at random.

investigate weights learned from social connections,
such as social status [22], social group membership [23].
However, previous studies ignore the potential negative
effect brought by misinformation.

In order to cope with the misinformation, it is
also common to employ a deletion-based method: first
detecting anomalous nodes in the dataset, and training
a model by training on the refined dataset. Various
methods have been proposed to study the anomalous
instances [5], by measuring the anonymity with content
and network information. Since malicious users in social
media may actively manipulate content and network
information to disguise themselves, recent work has
been proposed to study how the camouflage can be
detected [24, 11]. Deletion-based methods boil down
the problem into two stages, and each of them is solved
separately. The proposed framework jointly solves the
problem in a unified framework. In addition, additional
label information for anomalous data is also needed,
which can be difficult to annotate and obtain.

Our work is also related to sparse learning and
structured Lasso [9], which has been widely applied
in feature selection and representation learning. Real-
world data is usually of high dimensionality and can
be noisy, so sparse learning has been proposed to
uncover a descriptive representation of data with a small
portion of features being selected. A myriad of sparsity
structures has been studied in previous research, such
as group-structured and tree-structured. Our work
distances from existing sparse learning methods by
focusing on selecting data instances in lieu of features.

6 Conclusion and Future Work

The massive amount of social media data allows au-
tomatic modeling of users in the social media net-

work. Relational learning, which particularly focuses
on interconnected data instances, have been successfully
applied in a myriad of applications. An emerging
challenge of utilizing social media data is the negative
effect brought up by the misinformation. In this work,
we precisely focus on the problem of mitigating its
harm. In particular, we propose a unified framework
that simultaneously selects data instances and learn
a relational learning model. In order to allow for
efficient optimization, we utilize the social community
structure to effectively find groups of instances. We
also transform the combinatorial problem into a convex
optimization problem with relaxations. Experimental
results on real-world datasets show the superiority of the
proposed approach over competitive baseline methods.
We also conduct experiments to understand how RLM
selects and downweights data instances.

There are several promising directions for the prob-
lem of relational learning with misinformation. First,
this work focuses on misinformation and we produce a
dataset by randomly flipping labels of data instances,
which is the optimal step we can take with lack of
availability of real misinformation dataset. Hence, it
would be interesting to collect an organic misinforma-
tion dataset and study how the proposed framework
performs under different scenarios. Second, in order to
scale up the instance selection, we propose to utilize
the social community structure, and the community
detection is conducted separately with the relational
learning. In the future, we are interested in studying
how different community detection algorithms influence
the performance and investigating possibilities of inte-
grating them with the relational learning approach.
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