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ABSTRACT
When a message, such as a piece of news, spreads in social networks,
how can we classify it into categories of interests, such as genuine or
fake news? Classi�cation of social media content is a fundamental
task for social media mining, and most existing methods regard
it as a text categorization problem and mainly focus on using
content features, such as words and hashtags. However, for many
emerging applications like fake news and rumor detection, it is
very challenging, if not impossible, to identify useful features
from content. For example, intentional spreaders of fake news
may manipulate the content to make it look like real news. To
address this problem, this paper concentrates on modeling the
propagation of messages in a social network. Speci�cally, we
propose a novel approach, TraceMiner, to (1) infer embeddings
of social media users with social network structures; and (2) utilize
an LSTM-RNN to represent and classify propagation pathways of a
message. Since content information is sparse and noisy on social
media, adopting TraceMiner allows to provide a high degree of
classi�cation accuracy even in the absence of content information.
Experimental results on real-world datasets show the superiority
over state-of-the-art approaches on the task of fake news detection
and news categorization.

CCS CONCEPTS
• Learning paradigms → Supervised learning; classi�cation;
Dimensionality reduction; • Networks → Online social networks;

KEYWORDS
Misinformation, Fake News Detection, Graph Mining, Social Net-
work Analysis, Social Media Mining, Classi�cation

1 INTRODUCTION
As online social networks continue to pervade our culture, social
networking sites have become an attractive platform to facilitate
the spread of information. A recent study from Pew Research claims
that 62% of adults get their news from social media in United States,
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with 29% among them doing so very often1. Concomitant with
the expansive and varied sources of data are the challenges for
personalizing the massive amount of information and �ltering
out unwanted messages such as fake news and spam. However,
the sparse and noisy social media content makes it di�cult for
traditional approaches, which heavily rely on content features, to
tackle these challenges.

By contrast, our study aims to �nd additional data sources to
solve the problem. In this work, we focus on the di�usion of
information. A key driving force behind the di�usion of information
is its spreaders. People tend to spread information that caters to
their interests and/or �ts their system of belief [8]. Hence, similar
messages usually leads to similar traces of information di�usion:
they are more likely to be spread from similar sources, by similar
people and in similar sequences. Since the di�usion information
is pervasively available on social networks, in this work, we aim
to investigate how the traces of information di�usion in terms of
spreaders can be exploited to categorize a message. The message
can be a piece of news, a story or a meme that has been posted and
forwarded in social networks, and those users who post or forward
it are the spreaders. Traces of a message refer to by whom and
when the message is spread, i.e., posted or forwarded.

We propose TraceMiner, a novel approach for classifying social
media messages with di�usion network information. TraceMiner
takes traces of a message as input and outputs its category.
Consider the huge number of social media users and all the possible
combinations of spreaders, traces will be of high dimensionality and
thus may result in sparsity in the feature space. To cope with the
problem, TraceMiner utilizes the proximity of nodes [34] and social
dimensions [35] manifested in the social network, which have been
successfully applied to capture the intrinsic characteristics of social
media users in a myriad of applications.

To demonstrate TraceMiner’s potential on real-world applica-
tions, we evaluate it with traditional approaches on Twitter data.
TraceMiner outperforms competitors on multi-label information
classi�cation problems in large graphs. Therefore, TraceMiner
provides an alternative way for modeling social media messages
through learning abundant di�usion data that has not be fully
utilized. Existing graph mining research mainly focuses on learning
representation of graphs and nodes, while little attention has
been paid to classifying information circulating between nodes.
TraceMiner distances from existing graph representation methods
by directly modeling information and making predictions in an
1http://www.journalism.org/2016/05/26/news-use-across-social-media-platforms-
2016/
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end-to-end manner other than providing only an attribute vector
or embedding vector.

TraceMiner is scalable and the optimization can be easily
parallelized through open-source software libraries. Hence, our
method can be useful for a variety of social media mining problems
where information from content is insu�cient. Our contributions
can be summarized as follows:

• We propose a novel approach for classifying social media
messages with di�usion network information.

• We derive e�cient optimization methods for TraceMiner,
and provide analysis to guarantee the correctness.

• We extensively evaluate the performance on real social
network data, and the experimental results demonstrate
the e�ectiveness on di�erent tasks.

The rest of this paper is organized as follows. In Section 2,
we provide the de�nition for the problem. In Section 3, we
introduce the proposed approaches and the optimization methods.
How TraceMiner can be utilized to classify information di�usion
sequences is presented in Section 4. In Section 5, we show empirical
evaluation with discussions. Related work is discussed in Section 6.
Conclusion and future work are presented in Section 7.

2 PROBLEM DEFINITION
We consider the problem of classifying social media messages into
one or more categories. We de�ne a graph G ∈ 〈V ,E〉, where
vi ∈ V with i ∈ [1, |V |] is a node (user) and E ⊆ V × V is the set
of edges. If ei j ∈ E, there is an edge between vi and vj , otherwise
there is not. Let M be the set of messages where mi ∈ M with
i ∈ [1, |M |]. Each messagemi has a corresponding set of spreaders
{(vmi

1 , t
mi
1 ), {(v

mi
2 , t

mi
2 ), · · · , {(v

mi
n , t

mi
n )}, where n is the number

of spreaders formi and vmi
j is a user who spreadsmi at the time of

tmi
j . Messages are partially labeled and thus only some of them have

an associated class label. We denote the set of labels as Y , where
yi ∈ Y indicates that mi is labeled. Our goal is to learn a model
with the social network graph G and partially labeled message M
with the corresponding di�usion traces and label information Y , to
predict ŷ for the unlabeled messages.

Problem de�nition for traditional approaches: In order to
make predictions for messages, most existing methods take the
problem as a text categorization task, hence, each messagemi has
a set of spreaders {(vmi

1 , t
mi
1 , c

mi
1 ), · · · , {(v

mi
n , t

mi
n , c

mi
n )}, where

cmi
j is the content information.

3 PROPOSED METHOD
In this section, we introduce how a di�usion trace can be used to
facilitate classi�cation. We �rst utilize sequential modeling methods
to enable sequences to be used as attribute vectors. To alleviate the
sparsity of sequences, we present a novel embedding method.

3.1 Sequence Modeling
Given the spreader information {(vmi

1 , t
mi
1 ), · · · , {(v

mi
n , t

mi
n )} and

the graphG , the topology of information di�usion can be inferred by
graph mining techniques [9]. The topology, which is usually a tree
or forest (multiple trees) rooted with the initial spreader, contains
informative patterns for characterizing a message. However, it is

extremely di�cult to directly deal with the tree structure. Consider
two messages with similar di�usion networks, adding or removing
one spreader, or changing any direction of the information �ow
would lead to a di�erent tree. Theoretically, there can be nn−2

di�erent trees with n number of di�erent nodes according to the
Cayley’s formula [7].

In order to solve this problem, we convert the tree structure
into a temporal sequence. For example, given the spreaders of
mi {(v

mi
1 , t

mi
1 ), · · · , {(v

mi
n , t

mi
n )}, we generate a sequence xi =

[(vmi
q(1), t

mi
q(1)), · · · , (v

mi
q(n), t

mi
q(n))] where for any two elements k and

j in the sequence, if k < j, then tmi
q(k ) < tmi

q(j), meaning that vmi
q(k )

spread the information earlier than vmi
q(j) did. Therefore, given n

nodes, the number of all possible di�usion networks are reduced to
n!. In order to further alleviate the sparsity, we incorporate social
proximity and social dimensions in Section 3.2.

However, a possible problem of temporally sequencing spreaders
is the loss of dependencies between users. Given vmi and vmj
where ei j ∈ E. If tmi < tmj , it is likely that user i spreads it to
j or j is in�uenced by i [9]. Such direct dependency will be of
vital importance in characterizing the information. For example,
the information �ow from the controller account to the botnet
followers is a key signal in detecting crowdtur�ng[11]. But if there
is a spreader (umk , t

m
k ) where < tmi < tmj , in the sequence, i and

j will be separated. Therefore, it would be appealing if the model
can take advantage of dependencies between separated and distant
items in a sequence. To this end, we propose to apply Recurrent
Neural Networks (RNNs).

RNNs have been successfully applied in a myriad of domains for
modeling sequential data [10], such as information retrieval [28],
sentiment analysis [33] and machine translation [6]. We propose
to use an RNN to sequentially accept each spreader of a message
and recurrently project it into a latent space with the contextual
information from previous spreaders in the sequence. As the RNN
reaches the end of the sequence, a prediction can be made based
on the embedding vector produced by the hidden activations. In
order to better encode the distant and separated dependencies, we
further incorporate the Long Short-Term Memory cells into the
RNN model, i.e., the LSTM-RNN.

In information di�usion, the �rst spreader who initiates the
di�usion process is more likely to be useful for classifying the
message [1]. Hence, we feed the spread sequence in the reverse
order, where the �rst spreader in the sequence directly interacts
with the prediction result, and thus it has more impact. Each
spreader is represented by a local RNN. Parameters W of RNNs are
shared across each replication in the sequence andh′ is the previous
recurrent output sent between RNNs to exploit the contextual
information. In order to make the prediction, the last local RNNs are
taking the �rst spreader’s attribute vector, prior recurrent output
(and the label of the message) as input to predict the category of
the message (or to train the RNNs model). In this work, we set the
hidden node size (k) as 10. The way we obtain the attribute vector
of nodes is introduced in Section 3.2.

Having chosen LSTM-RNNs as our method to classify messages,
we now need a suitable way of learning attribute vectors f , for
social media users. An intuitive way is to utilize the social network
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(a) Frequency of users in social media
message traces.
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Figure 1: The frequency of users appearing in traces of social
media messages follows a power-law distribution, which is
similar to the distribution of word frequencies in messages.

graphG to generate embedding vectors [29, 34], and feed sequences
of embedding vectors to the LSTM-RNNs [28]. Such embedding-
based preprocessing for sequential data has been widely used for
natural language processing. We follow the practice since 1) several
social graph embedding approaches have been proven useful for
classi�cation tasks, such as LINE [34] and DeepWalk [29], and 2)
users appear in spread traces follow similar distribution of how
words appear in the social media posts.

Figure 1 illustrates the distribution of users and words. The
distribution in Figure 1(a) comes from a real-world Twitter message
trace dataset showing how users appear in message traces. The
distribution in Figure 1(b) comes from the same dataset showing
how words appear in message content. They both follow a power-
law distribution, which motivates us to embed users into low
dimensional vectors, as how embedding vectors of words are used
in natural language processing [16, 28]. Several graph embedding
algorithms are available, we will compare their performance and
provide our solution and reasons behind our choice in the next
subsection. For the rest of the subsection, we will introduce the
optimization for the proposed LSTM-RNNs.

We show the training of the proposed LSTM-RNNs in Algo-
rithm 1. We input the labeled spreader sequences X and the
corresponding labels Y , which are randomly split into a training
and a validation set in line 2. In addition to the maximum number
of iterations Maxiter , we also have a function EarlyStop() for
controlling early termination of the training, which takes the loss
on the validation set as the input. In line 1, we initialize the model
parameters randomly with Gaussian distribution. From line 3 to
7, we update W with training data until the maximum epoch is
reached or the early termination condition is met. The loss function
used in line 4 is shown below:

|Xtr |∑
i=1
|Ytr = 0|yi log(ŷi ) + |Ytr = 1|(1 − yi )(log(1 − ŷi )), (1)

whereyi is the true label of i and ŷi is the corresponding prediction.
So Eq.(1) calculates the cross entropy between the true labels and
the prediction. |Ytr = 0| (|Ytr = 1|) is the number of negative
(positive) instances in the training set. Since we aim to work on
multi-label classi�cation, the data is naturally imbalanced when we
model one of them, introducing the weight helps the model balance

the gradient of skewed data. In next subsection, we will introduce
how we generate embeddings and the reason behind our choice.

Algorithm 1 Training Algorithm of LSTM-RNNs
Input: Labeled sequences and labels X ,Y

Maximum number of iterations: Maxiter
Early termination function : EarlyStop()

Output: Weights of LSTM-RNNs: W
1: Initialize W randomly with Gaussian distribution,
VLoss[Maxiter ], i = 0
2: Split X and Y into training and validation set, (Xtr ,Ytr ) and
(Xval ,Yval )
3: do
4: Train RNNs with (Xtr ,Ytr ) for 1 epoch with Eq.(1)
5: Test RNNs with (Xval ,Yval ) to obtain loss VLoss[i]
6: i = i + 1
7: while EarlyStop(VLoss, i) = FALSE AND (i < Maxiter )

3.2 Embedding of Users
Given the framework of sequence modeling, the next problem is
to �nd the proper embedding method that captures the intrinsic
features of social media users. As discussed previously, using
embedding vectors can help alleviate the data sparsity through
leveraging social proximity and social dimensions. In this work,
among the existing embedding methods, we will mainly focus on
two state-of-the-art approaches that have been proven e�ective
on social graphs, LINE [34] and DeepWalk [29]. Both LINE and
DeepWalk aim to provide a representation for data instances that
captures the inherent properties, such as social proximity.

These methods mainly focus on the microscopic structure of
networks. For example, �rst-order proximity constrains users that
are connected to be similar and second-order proximity constrains
users that have common friends to be similar. LINE achieves this
by sampling such nodes from the network and updating their
representations jointly, while DeepWalk samples a sequence of
data with a random walk algorithm. Nevertheless, for a large social
graph, some mesoscopic structure such as social dimensions [35]
and community structures [44] are more useful in characterizing
information [17]. Therefore, the ideal embedding method should
be able to capture both local proximity and community structures.

Table 1 illustrates our results of using di�erent embedding
methods. We test LINE, DeepWalk and SocDim [35] on Twitter
data and show the distance between neighbors with the new
representation. We also detect community structures in the network
and calculate the average of distances between nodes that are
in the same community. The community detection algorithm is
an accelerated version of Louvain method [2]. As shown in the
table, LINE captures the �rst and second-degree proximity, while
SocDim best captures the community-wise proximity. Based on
the random walk, DeepWalk achieves better community-wise
proximity, however, it is still outperformed by SocDim, which
directly models the community structure.

In order to capture both the social proximity and community-
wise similarity among users, we propose a principled framework
that directly models both kinds of information. Given the social
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Table 1: Average Euclidean distance between nodes with low
dimensional representation.

Method 1st -degree 2nd -degree Intra-group

LINE 5.16 5.00 10.76
DeepWalk 7.74 7.69 6.04
SocDim 6.87 6.12 4.55

graph G, we can derive an adjacency matrix S ∈ Rn×n , where
n is the number of users. Our goal is to learn a transformation
matrix M ∈ Rn×k which converts users to a latent space with
the dimensionality of k . Note that we reuse k for brevity of
presentation, and the number of features and hidden nodes in the
LSTM-RNNs are not necessarily the same. In order to capture the
community-wise similarity, we introduce two auxiliary matrices, a
community indicator matrix H ∈ Rn×д , where д is the number of
communities and tr (HHT ) = n (only one element is 1 in each row
and all the others are 0), and a community representation matrix
C ∈ Rд×k , where each row ci is an embedding vector describing the
community. In order to capture the community structure, we embed
the problem into an attributed community detection model [44]:

min
M,H,C

n∑
i=1
| |siM − hiC| |22 + α | |H −MCT | |2F ,

s.t. tr (HHT ) = n,

(2)

where siM is the embedding vector and we regularize it to be
similar to the representation of its corresponding community hiC.
The second term aims to achieve the intra-group coherence by
predicting the community assignment by group the embedding
vectors of users and communities [44]. The objective function
in Eq.(2) aims to cluster nodes with embedding vectors. In order
to further regularize the clusters to be social communities, we
adopt a modularity maximization-based method, which has been
widely used to detect communities with network information [37].
Speci�cally, given the adjacency matrix S and the community
membership indicator, the modularity is de�ned as follows [35]:

Q =
1

2|E |

∑
i, j
(Si j −

didj

2|E |
)(hihTj ), (3)

where |E | is the number of edges and di is the degree of i . hi is
the community assignment vector for i , and hihTj = 1 if i and j

belong to the same community, otherwise hihTj = 0. didj
2 |E | is the

expected number of edges between i and j if edges are placed at
random. ModularityQ measures the di�erence between the number
of actual edges within a community and the expected number of
edges placed at random. An optimal community structure H should
maximize the modularity Q . By de�ning the modularity matrix
B ∈ Rn×n where Bi j = Si j −

didj
2 |E | and suppressing the constant

which has no e�ect on the modularity, we rewrite Eq.(3) as follows:

Q = tr (HT BH).

In order to guarantee that the embedding vectors preserve
the community structure in the latent space, we propose to
integrate modularity maximization into the embedding method.

The objective function can be rewritten with the modularity
maximization regularizer as follows:

min
M,H,C

n∑
i=1
| |siM − hiC| |22 + α | |H −MCT | |2F − βtr (H

T BH)

s.t. tr (HHT ) = n,

(4)

where β controls the in�uence of community structures. As
discussed previously, the microscopic structure is also of vital
importance for generating embedding vectors. In order to jointly
consider both mesoscopic and microscopic structures, we decom-
pose M into a conjunction of a global model parameter M̃ and a
localized variable Mi for each user i (M = M̃ +Mi for each user i).
Therefore, M̃ captures the community structure and Mi can be used
to directly apprehend the microscopic structure between nodes.
Motivated by recent research on network regularization, we fortify
the representation of nodes with proximity by the network lasso
regularization term [12]:∑

i, j
Ai j | |Mi −Mj | |

2
F ,

where A ∈ Rn×n is the microscopic structure matrix, Ai j = 1 if
we aim to preserve the proximity between i and j in the latent
space. Following conventional graph embedding practices [34], we
consider �rst- and second-degree proximity, meaning that Ai j = 1
if i and j are connected or share a common friend. Note that A can
be speci�ed with particular applications. Imposing the Frobenius
norm of the di�erence between Mi and Mj incentivizes them to
be the same when Ai j = 1. By incorporating the network lasso
regularizer, the objective function can be reformulated as follows:

min
M,H,C

n∑
i=1
| |si (M̃ +Mi) − hiC| |22 + α | |H − M̃CT

| |2F

− βtr (HTBH) + γ
∑
i, j

Ai j | |Mi −Mj | |
2
F ,

s.t. tr (HHT) = n,

(5)

where γ controls the in�uence of the network lasso. As we can see,
we establish the consensus relationship between mesoscopic and
microscopic network structures by jointly considering the social
communities and proximity. By introducing the global parameter
M̃ and the personal variable Mi , we force both kinds of information
to be preserved in the newly-learnt embedding vectors. However,
Eq.(5) is not jointly convex to all the parameters M,H and C. In
order to solve the problem, we separate the optimization into
four subproblems and iteratively optimize them. We will introduce
details of the optimization for the rest of the section.

Update M̃ while �xing Mi, H and C: By removing terms that are
irrelevant to M̃, we obtain the following optimization problem:

min
M̃

n∑
i=1
| |si M̃ + siMi − hiC| |22 + α | |H − M̃CT

| |2F , (6)

which is convex w.r.t. M̃. In real applications, the number of users
n may be huge. Hence, we adopt a gradient-based update rule as
follows:

M̃ = M̃ − τ
∂ϵM̃

∂M̃
, (7)
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where τ is the step size that can be obtained through backtracking
line search [27]. The derivative of M̃ is shown as follows:

∂ϵM̃

∂M̃
= sTi

n∑
i=1
(si M̃ + siMi − hiC) + α(H − M̃CT

)C. (8)

Update Mi while �xing M̃, H and C: By removing terms that are
irrelevant to Mi , we obtain the following optimization problem:

min
Mi

n∑
i=1
| |si M̃ + siMi − hiC| |22 + γ

∑
i, j

Ai j | |Mi −Mj | |
2
F , (9)

which is convex w.r.t. Mi . Similarly, we derive the gradient:

∂ϵMi

∂Mi
= sTi

n∑
i=1
(si M̃ + siMi − hiC) + γ

∑
i, j

Ai j (Mi −Mj ). (10)

Update C while �xing M̃, Mi, and H: By removing terms that are
irrelevant to C, we obtain the following optimization problem:

min
C

n∑
i=1
| |si (M̃ +Mi) − hiC| |22 + α | |H − M̃CT

| |2F , (11)

which is convex w.r.t. C. Similarly, the gradient can be obtained as:

∂ϵC
∂C
=

n∑
i=1

hTi (hiC − si M̃ − siMi) + α(M̃CT − H)T M̃. (12)

Update H while �xing M̃, Mi, and C: By removing terms that are
irrelevant to H, we obtain the following optimization problem:

min
H
| |SM − HC| |2F + α | |H − M̃CT

| |2F − βtr (H
T(S − B̂)H),

s.t. tr (HHT ) = n,
(13)

where B̂i j =
didj
2 |E | . Consider that H is an indicator matrix, the

constraint makes the problem in Eq.(13) NP-complete, which is
extremely di�cult to solve. In order to cope with the problem, we
relax the constraint to orthogonality HT H = I and nonnegativity
H ≥ 0 and reformulate the objective function as follows:

ϵH = − βtr (HT SH) + βtr (HT B̂H) (14)

+ | |SM − HC| |2F + α | |H − M̂CT
| |2F

+ λ | |HT H − I| |2F ,

where λ > 0 should be a large number to guarantee the orthogonal
constraint to be satis�ed, and we set it as 108 in this work. We then
utilize the property that | |X| |2F = tr (XT X) to reformulate the loss
function as follows:

ϵH = − βtr (HT SH) + βtr (HT B̂H) (15)
+ tr (SMMT ST + HCCT HT − 2SMCT HT )

+ αtr (HHT + M̂CT CM̃T − 2HCM̃T )

+ λtr (HT HHT H − 2HT H + I) + tr (ΘHT ),

where Θ = [Θi j ] is a Lagrange multiplier matrix to impose the
nonnegative constraint. Set the derivative of ∂ϵH

∂H to 0, we have:

Θ = 2SH − 2βB̃H − 2CCT HT + 2SMCT (16)
− 2αHT + 2αCM̃T − 4λHHT H + 4λH.

Following the Karush-Kuhn-Tucker (KKT) condition for the
nonnegativity, we have the equation as follows:

(2SH − 2βB̃H − 2CCT HT + 2SMCT − 2αHT (17)
+2αCM̃T − 4λHHT H + 4λH)i jHi j = θi jHi j = 0,

which is the �xed point equation that the solution must satisfy at
convergence. The update rule for H can be written as follows:

H = H �

√
−2βB̃H +

√
∆

8λHHT H
, (18)

where ∆ is de�ned as:

∆ = 2β(B̃H) � (B̃H) + 16λ(HHT H) (19)
� (2SH − 2CCT HT + 2SMCT

− 2αHT + 2αCM̃T + 4λH).

The convergence of Eq.(19) can be proven as an instance of
nonnegative matrix factorization (NMF) problem [18].

3.3 Time complexity
TraceMiner consists of two components, LSTM-RNNs and the
embedding method. Though LSTM-RNNs take O(|E | + |V |)-time
for backpropagations, the scalability can be easily increased with
deep learning software library like Theano2, especially when GPU
is available.

Since the number of users is usually far larger than the number
of features and number of communities, the embedding method
takes O(n2)-time. Only matrix multiplication is used in all update
rules, so the optimization can be accelerated by utilizing matrix
optimization library like OpenBLAS3.

4 ALGORITHM-TRACEMINER
In this section, we introduce the detailed procedure of TraceMiner
method for network di�usion classi�cation. The overall process
consists of two steps:

• Learning embeddings based on network connectivity. In this
work, we aim to utilize the social identity of a user to infer
the information she spreads. Hence, we learn embeddings
from friendships and social community memberships.

• Construct a sequence classi�er with LSTM-RNNs. After we
obtain the embeddings of social media users, we consider
a social media message as a sequence of its spreaders. We
employ LSTM-RNNs to model the sequence, and the �nal
hidden output are aggregated using softmax to produce a
predicted class label.

The �rst step utilizes network structures to embed social media
users into space of low dimensionality, which alleviates the data
sparsity of utilizing social media users as features. The second step
represents user sequences of information di�usion, which allows
for the classi�cation of propagation pathways.

2http://deeplearning.net/software/theano/
3http://www.openblas.net/
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Table 2: Statistics of the datasest used in this study.

Messages Posts Unique Users Class Ratio
Real News 68,892 288,591 121,211 0.27(b):0.25(t):0.37(e):0.11(m)
Fake News 3,600 17,613 9,153 0.5:0.5

5 EXPERIMENT
In this section, we introduce experiment details to validate the
e�ectiveness of the proposed framework. Through the experiments,
we aim to answer two questions:

• How well can network information be used to classify
social messages compared with content information?

• How e�ective are the LSTM-RNNs by integrating with the
proposed embedding method?

Therefore, we test the methods on two di�erent classi�cation
tasks with real-world datasets and include both content-based and
network-based baselines for comparison.

5.1 Datasets
Over 200 million posts are posted per day on Twitter4 and the
popularity has made Twitter a testbed for information �ltering
research. In this work, we aim to collect a large dataset that includes
tweets about speci�c messages. Following [30], we leverage Twitter
Search API5 to retrieve tweets of interests by compiling queries
with certain topics.

We deal with two tasks in this work, standard news classi�cation
and fake news detection. News classi�cation is a classical multi-
label text categorization problem and existing e�orts have mainly
focused on the content. We obtain a news dataset which was
originally used for content-based classi�cation6 by selecting news
that has at least two posts on Twitter. Queries for Twitter Search
API are compiled by words in the title of the corresponding news.
Based on the spreaders of news, we try to use TraceMiner to classify
the news into four categories: business (b), science and technology
(t), entertainment (e), medical (m). Statistics about the dataset are
shown in Table 2. We sample 68, 892 pieces of news, which relate
to 288, 591 posts with 121, 211 unique users. The ratio of di�erent
categories is also presented.

The other task is fake news detection. The openness of social
media platforms enables timely information to be spread at a
high rate. Meanwhile, it also allows for the rapid creation and
dissemination of fake news. Following [30], we retrieve tweets
related to fake news by compiling queries with a fact-checking
website. In this work, we choose Snopes7 to obtain ground truth,
where we collect articles tagged with fake news8. In order to
obtain non-fake news posts pertaining to the same topic, we
extract keywords in regular expressions as queries to retrieve
posts. Statistics of the dataset is shown in Table 2. We collect 3, 600
messages with 50% are fake news.

4https://blog.twitter.com/2011/200-million-tweets-per-day
5https://dev.twitter.com/rest/public/search
6https://archive.ics.uci.edu/ml/datasets/News+Aggregator
7http://www.snopes.com/
8https://www.snopes.com/tag/fake-news/

5.2 Experimental Settings
A core contribution of our work is the idea that spreaders of
information can be used to predict message categories. Therefore,
we try to test the e�ectiveness of the proposed method comparing
with the state-of-the-art content-based approaches. We experiment
a variety of approaches, and report the following two which achieve
better results.

• SVM [13] trains on content information, which is �rst
preprocessed with Stanford CoreNLP toolkit [24]. We
adopt bigram and trigram features based on results on
the validation set.

• XGBoost [5] is an optimized distributed gradient boosting
library that implements machine learning algorithms under
the Gradient Boosting framework. It has been successfully
applied to various problems and competitions. We feed
it with the preprocessed content produced by Stanford
CoreNLP. XGBoost presents the best results among all
content-based algorithms we tested.

We propose a novel embedding method to cater to TraceMiner.
In order to evaluate its e�ectiveness, we introduce two variants of
TraceMiner and present their results for comparison:

• TM(DeepWalk) is a variant of TraceMiner by adopt-
ing the embedding vectors from DeepWalk as input. As
discussed earlier, DeepWalk captures proximity between
nodes with random walk: nodes that are sampled together
with one random walk are forced to preserve the simi-
larity in the latent space. Therefore, DeepWalk does not
directly model the �rst and second-degree proximity or
the community structure.

• TM(LINE) is a variant of TraceMiner by adopting the
embedding vectors from LINE. LINE models �rst and
second-degree proximity while does not consider the
community structure between users.

To test the prediction accuracy in terms of both precision and
recall, we adopted the F1-measure to evaluate the performance.
Since there are multiple labels to be predicted, for each task t, F t1
can be computed. In order to get the overall performance, we �rst
adopt the Macro-averaged F1-measure as:

Macro − F1 =
1
|T |

∑
t ∈T

F t1 , (20)

whereT is the set of all identity labels and F t1 is the F1-measure of
task t.

A possible problem of Macro-F1 is, since the sizes of di�erent
categories are di�erent, the task with fewer instances may be
overemphasized. In order to cope with this problem, we adopted
Micro-averaged F1-measure. First, we calculate the micro averaged
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Table 3: The F1-measure of di�erent methods on the task of social media news categorization.

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%)

SVM 0.6967 0.7138 0.7447 0.7577 0.7988 0.8096 0.8499 0.8787 0.8996
XGBoost 0.7121 0.7349 0.7512 0.7794 0.8248 0.8250 0.8638 0.8951 0.9047
TM(DeepWalk) 0.7895 0.8081 0.8149 0.8374 0.8569 0.8627 0.8852 0.8917 0.9184
TM(LINE) 0.7691 0.7926 0.8163 0.8379 0.8467 0.8744 0.8980 0.9106 0.9253
TraceMiner 0.8275 0.8460 0.8658 0.8835 0.8885 0.9141 0.9218 0.9357 0.9380

Macro-F1(%)

SVM 0.6988 0.7260 0.7425 0.7754 0.7665 0.7872 0.8118 0.8314 0.8722
XGBoost 0.7305 0.7438 0.7857 0.7887 0.8144 0.8344 0.8726 0.8941 0.9044
TM(DeepWalk) 0.7746 0.8010 0.8156 0.8313 0.8377 0.8611 0.8646 0.8734 0.8839
TM(LINE) 0.7561 0.7895 0.8019 0.8138 0.8235 0.8568 0.8775 0.8896 0.9153
TraceMiner 0.8181 0.8347 0.8359 0.8549 0.8635 0.8788 0.8779 0.8882 0.9064

precision and recall:

Micro − precision =
#TP

#TP + #FP
(21)

Micro − recall =
#TP

#TP + #FN
,

where #TP is the number of true positives, #FP is the number of
false positives and #FN is the number of false negatives. Micro-F1
is the harmonic average of Micro-precision and Micro-recall.

5.3 Experimental Results
Social Media News Categorization: The performance of di�er-
ent methods on Twitter News data with varying training ratio,
from 10% to 90%, is illustrated in Table 3. For each experiment,
samples are randomly split into training and testing set. We repeat
this process 10 times and report the average results. The highest
performance under each setting is highlighted in bold face.

In terms of Micro-F1, our proposed model TraceMiner out-
performs all the baselines and its variations, TM(DeepWalk),
TM(LINE). Di�usion-based methods perform better than content-
based methods. XGBoost performs slightly better than SVM.
TM(DeepWalk) is the runner-up method for 10%, 20% and 50%,
and TM(LINE) is the runner-up for the rest cases. The result
shows that when less network data is available, the random
walk-based approach produces better embeddings of users; And a
more deterministic method constraining on social proximity better
apprehends user behaviors when the network information is more
complete. TraceMiner achieves the best result for all tasks. By jointly
modeling the microscopic and mesoscopic structures, TraceMiner
is more robust to data sparsity.

In terms of Macro-F1, XGBoost outperforms SVM for all cases.
Similar pattern has again been observed: TM(DeepWalk) outper-
forms TM(LINE) with less training information, while TM(LINE)
outperforms TM(DeepWalk) when the information is more com-
plete. TraceMiner still performs the best among most cases until
we increase the training ratio up to 80%. XGBoost and TM(LINE)
achieves the best result for 80% and 90%, respectively. Two observa-
tions can be made here: with more training information becoming
available, 1) the margin between proposed methods and the content-
based methods becomes smaller; and 2) the margin between
TraceMiner and its variants TM(LINE) and TM(DeepWalk) becomes
smaller. Based on the observations we can draw conclusions

that TraceMiner is more useful when less training information
is available, and the proposed TraceMiner can well handle scarce
data in the early phase of learning when less training information is
known. XGBoost gets the best when 80% of information is available.
Since text-based categorization is a well-studied problem, and it is
easy to solve when rich information is available, TraceMiner will be
able to complement those cases that are di�cult for content-based
approaches to deal with, and such cases are pervasively present in
social media mining tasks where content information is insu�cient
and noisy.

Another observation that again validates our �ndings is that
TraceMiner performs better in terms of Micro-F1. As shown in
Eq.(20) and (21), in a multi-label classi�cation task, the category
with fewer instances is more advantageous for Macro-F1. The
results show that TraceMiner actually ends up with correctly
classifying more instances.

Fake News Detection: The performance of di�erent methods
on Twitter fake news data with varying training ratio, from 10%
to 90%, is illustrated in Table 4. Since the dataset is balanced,
Micro- and Macro-F1 are the same, so only one set of results are
presented. For the content-based approaches, XGBoost consistently
outperforms SVM for all cases. For the two variants of TraceM-
iner, similar patterns are observed: TM(DeepWalk) outperforms
TM(LINE) when less training information is available. TM(LINE)
outperforms TM(DeepWalk) when more information is available
for training. It again proves that random walk-based sampling is
more e�ective for scarce data, and proximity-based regularization
better captures data structures with more training information.

An interesting di�erence between the results for fake news and
the previous experiment is the larger margin between proposed
methods and content-based methods. Unlike posts related to news
where the content information is more self-explanatory, content
of posts about fake news is less descriptive. Intentional spreaders
of fake news may manipulate the content to make it look more
similar to non-rumor information. Hence, TraceMiner can be
useful for many emerging tasks in social media where adversarial
attacks are present, such as detecting rumors and crowdtur�ng.
The margin between content-based approaches and TraceMiner
becomes smaller when more information is available for training,
however, in these emerging tasks, training information is usually
time-consuming and labor-intensive to obtain.
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Table 4: The F1-measure of di�erent methods on the task of fake news detection.

Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%
SVM 0.5825 0.5779 0.6122 0.6194 0.6658 0.7114 0.7224 0.7252 0.7581
XGBoost 0.6558 0.7004 0.7002 0.7153 0.7288 0.7703 0.7984 0.8115 0.8226
TM(DeepWalk) 0.7804 0.7810 0.8078 0.8264 0.8194 0.8491 0.8542 0.8738 0.8894
TM(LINE) 0.7542 0.7547 0.7913 0.8015 0.8083 0.8485 0.8733 0.8936 0.8971
TraceMiner 0.7867 0.7935 0.8344 0.8459 0.8547 0.8751 0.8988 0.9089 0.9124

Another point we would like to discuss is the performance
when the training information is very insu�cient. When 10% of
information is available, SVM has an F1 score of 58% which is
slightly better than a random guess, while TraceMiner has an
F1 score of 78%. Although such margin is reduced when more
information is available, the optimal performance with very few
training information is of crucial signi�cance for tasks which
emphasize on the earliness. For example, detecting fake news at
an early stage is way more meaningful than detecting it when
90% percent of its information is known [30, 31, 40]. In conclusion,
TraceMiner provides an e�ective method for modeling messages
di�used in social media with only network information, which
provides a complementary tool for emerging tasks that require
earliness and/or su�ers from the scarcity of content information.

6 RELATEDWORK
This work mainly focuses on classifying social media messages,
which is a fundamental problem in social media mining. It can be
useful for many classical tasks including social recommendation,
personalization and targeted advertising. Accurate categorization
of social media content allows for precise �ltering of information,
which helps alleviate the information overloading. A recent surge
for social media platforms is the attacks of disinformation launched
by malicious users. Both content and network information has been
studied to detect malicious users, such as spammers [38, 39] and
crowdturfers [41]. In terms of network information, traditional
approaches usually derive features from the social networks and
spreaders of a message. For example, Hu et al. assume that
the information spread by similar users tend to share similar
properties [38], and the network information mainly centers around
the user instead of information itself. Our work distances from the
existing work by directly studying the network information.

Our work is also related to network structure mining methods.
Neural network models have been applied on network data for
tasks such as classi�cation [43] and clustering [36]. These existing
methods focus on the nodes in the graph, while our work focuses
on the network structure itself, which is manifested by the di�usion
of messages. In addition, unlike existing graph representation meth-
ods, our goal is to provide an end-to-end system with prediction
results, instead of o�ering only the embedding vectors. Recent
research has been proposed to utilize RNNs for classi�cation in an
semi-supervised manner [25], which is also related to our work.

We present a novel graph embedding model, which is related to
existing embedding methods and feature selection on networked
data [20]. For example, DeepWalk [29] links a network embedding
problem into a word embedding problem by showing the similar
distribution of nodes appearing in random walks and words

appearing in sentences. They employ a Skip-Gram model, which
was originally proposed for modeling natural languages, to learn
embedding of graphs. LINE [34] aims to preserve the �rst- and
second-order proximity between nodes, and provides an embedding
vector by concatenating results on both levels. Our work focuses on
encoding both social proximity and social community information
to alleviate the data sparsity, instead of investigating only one
of them [22, 23]. Recent studies also study and utilize network
dynamics by observing the change of social networks over time [19,
21]. We focus on a snapshot since the newly established/withdrawn
links during the study are very few.

Our work is related to information di�usion. There are various
models which are designed to abstract the pattern of information
di�usion, such as SIR Model [15], Tipping Model [4], Independent
Cascade Model [14] and Linear Threshold Model [14]. However,
traditional information di�usion models abstract the di�usion
process to estimate the virality of information and ignore the
interaction between multiple campaigns, which cannot be directly
applied here.

Our work can be particularly helpful for identifying messages
that cannot be easily detected with the content. An emerging
problem that has the feature is rumor and fake news detection. For
example, supervised learning approaches have been used to detect
rumors [40] and the spreaders [26]. The proposed process usually
consists of two stages: employing a feature engineering approach
to distinguish misinformation [42] from Twitter’s normal content
stream and utilize a supervised learning approach to train a detector.
However, supervised approaches depend on content information,
which can be easily manipulated by malicious spreaders. Previous
studies have explored how malicious information can be detected
from node to node [3], however, the proposed systems can only
help visualize and track known events and require experts to
observe it and make decisions. The process requires certain domain
knowledge and expertise, while TraceMiner is an end-to-end
method taht directly studies the information di�usion.

7 CONCLUSION
In this work, we aim to classify messages spread in social networks,
which is a fundamental problem for social media mining. We ob-
serve that for many emerging tasks, content information is usually
insu�cient or less descriptive, while pervasively available network
information is left unused. Therefore, we propose a novel method
TraceMiner that classi�es social media messages with di�usion
traces in social networks. To address the problem, we propose an
end-to-end classi�cation model based on LSTM-RNNs. In order
to alleviate the data sparsity, we propose an embedding method
that captures both social proximity and community structures.
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Experimental results with real-world datasets show that TraceMiner
e�ectively classi�es social media messages and is especially useful
when content information is insu�cient.

Future work can be focused on two aspects. First, we would like
to investigate if TraceMiner can be used to facilitate other network
mining tasks, like recommendation and link prediction. Second,
since content information is also readily available, we will study
how content and network information can be jointly utilized.
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