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ABSTRACT
Given a collection of items to display, such as news, videos,
or products, how can we optimize their presentation order to
maximize user engagements, such as click-through rate, viewing
time, and the number of purchases? The problem becomes more
complicated when the items are displayed in a grid-based, 2-
dimensional presentation on a widescreen. For example, many E-
Commerce websites such as Amazon and Etsy are displaying their
products in a grid-like format, and so are streaming services like
Youtube and Netflix. Unlike 1-dimensional space, where products
can be naturally ranked in a vertical order, the presentation in
2-dimensional space poses a novel challenge about how to find
the best presentation order - should we put the best listing on
the top left corner, or the central position on the second row? We
are aware that many traditional methods can be applied to solve
the problem, such as conducting an attention heatmap web test,
or a randomization experiment by shuffling positions of listings.
However, both tests are costly to perform and they may downgrade
the quality of users’ search experience. By contrast, we focus on
utilizing existing search log data to reveal propensity of positions,
which is readily available and ubiquitously abundant.

In a nutshell, the study presents how we find an optimal way
of presentation in a grid-based environment - more relevant
content should be placed in a more noticeable position. The
position noticeability is further quantified to help ranking models
better understand the signal of relevance manifested in user
feedbacks. Our investigation paves the way for an end-to-end
item presentation framework that learns the optimal layout for
optimizing user engagements. Experimental results based on real-
world data show the superiority of the proposed approach over
state-of-the-art methods.
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(a) 1-D presentation of search results: listings are ranked vertically.

(b) 2-D presentation of search results: listings are displayed in a grid-
based format.

Figure 1: Examples of search results displayed in 1-D and
2-D formats.

1 INTRODUCTION
2-dimensional presentation is ubiquitous in online applications.
For example, most E-Commerce search platforms, such as Taobao,
Amazon and Ebay, would present content in a grid-based format on
widescreens. However, existing applications are heavily influenced
by general web search, where users are assumed to browse items
in a top-down, 1-dimensional manner. Figure 1 shows examples
of 1-D and 2-D presentations of search results. As illustrated in
Figure 1(a), customers who search naturally scan results from top
to bottom. When items are displayed in a 2-dimensional grid space
as shown in Figure 1(b), users may not start their browsing from
the top left corner. In this work, we aim to investigate how the
2-dimensional presentation would influence user behaviors and
how an optimal relevance ranking algorithm can be learned. In
particular, we will focus on the problem of E-Commerce search,
where items are products.

https://doi.org/10.1145/3437963.3441749
https://doi.org/10.1145/3437963.3441749
https://doi.org/10.1145/3437963.3441749


It can be time-consuming and labor-intensive to manually
investigate users’ browsing behaviors. Therefore, we propose to
solve the problem based on the massive amount of search log
data. Previous literature shows that search log data can help us
understand how users would distribute their attention on different
positions of a search result page [3, 13, 16, 23, 26, 27]. Existing
methods aim to tackle the challenge of presentation bias in web
search, and a main intuition here is to consider how positions would
affect users’ behaviors. For example, a click may be driven by both
the relevance between user intent and search results, and how the
position would attract attention of the user. Similarly, we aim to
utilize product search log data to identify the browsing patterns
of online customers. Search log data also allows for convenient
extension to a personalized approach by soliciting personal data.

However, solutions from web search cannot be directly applied
due to the intrinsic distinctions between product search and web
search. Early work requires an intervention experiment to be
conducted to estimate propensity of each position [16], e.g., we may
swap results on two positions to estimate the relative influence
of presentation bias. However, such intervention experiments
unavoidably influence search experience in a negative way since
it requires a large number of tests to reduce the variance. Later
research proposes to directly estimate the influence using search
log data, assuming the propensity is a variable associated to each
position [2, 3, 13, 27]. However, they assume that search results are
vertically ranked in a list, while E-Commerce sites usually display
products in a 2-dimensional, grid-based space.

A particular challenge of 2-dimensional presentation is that
it hinders convergence of classic 1-dimensional approaches. To
estimate the influence of each position, which is also called
propensity [16], an end-to-end method will have to iteratively
estimate the nested two problems [3, 13], i.e., relevance estimation
and propensity estimation. Note that the convergence of one
problem relies on the convergence of the other one. Therefore,
it is less challenging to control the convergence in 1-dimensional
space since the propensity is naturally monotonically decreasing
(users browse from top to bottom). In a 2-dimensional grid-based
space, the number of parameters for propensity prediction increases
exponentially, and it is difficult to assume fashions of browsing.

In this work, we present an end-to-end solution for product
ranking in E-Commerce search by dealing with presentation bias
in a 2-dimensional space. The proposed method utilizes search log
data and user feedback signals including clicks and conversions.
This is a nontrivial task due to the nested nature of the two tasks,
i.e., propensity prediction and relevance prediction. Our proposed
method leverages causal inference to dismantle the influence of
position from relevance. Contributions can be summarized as

• We define a new problem of optimizing 2-dimensional
product ranking in E-Commerce search, where items are
displayed in a grid-based space;

• We propose an end-to-end approach that utilizes only search
log data to rank items in 2-d presentation without additional
intervention experiments.

• We conduct extensive experiments with real-world data to
validate the performance of the proposed algorithm against
competitive baseline methods.

The rest of the paper is organized as follows. In Section 2 we
introduce the problem of 2-dimensional product search in E-
Commerce, and formally define the computational problem. In
Section 3, we present the presentation bias problem in product
search and present the proposed framework. Experiments will be
discussed in Section 4. Section 5 will discuss related work. Section 6
will conclude the paper and provide future directions.

Table 1: Notations and Description

Notation Description

I,Q, S,M Set of items, queries, sessions, impres-
sions

𝐶 (𝑖, 𝑞) Click information where 𝐶 (𝑖, 𝑞) = 1
means 𝑖 was clicked

𝐶𝑇𝑅(𝑖, 𝑞) Click-through rate of an item given
query q

𝑅𝑚𝑎𝑥 ,𝐶𝑚𝑎𝑥 The maximum number of rows and
columns on a search result page

𝑝𝑟 Propensity score of position where row
= 𝑟

𝑝𝑟,𝑐 Propensity score of position where row
= 𝑟 and column = 𝑐

𝑟 (𝑞, 𝑖) Ground-truth relevance score of be-
tween a pair of 𝑞 and 𝑖

𝑃 (𝑟𝑒𝑙 = 1|𝑖, 𝑞) The probability of 𝑖 and 𝑞 being relevant
𝑚 =

(𝑞, 𝑖, 𝑟𝑒𝑙, 𝑏, 𝑝)
An impression with its query, item,
relevance, user behavior and position.
We will use𝑚.𝑞,𝑚.𝑖 , etc.

2 PROBLEM STATEMENT
When a query 𝑞 ∈ 𝑄 is submitted, a subset of items will be selected
as candidates for being displayed to the user. The problem of sorting
the candidates is a typical post-ranking problem that we focus on
in this work. We assume the display space is 2-dimensional, where
𝑟 ≤ 𝑅𝑚𝑎𝑥 is the id of row and 𝑐 ≤ 𝐶𝑚𝑎𝑥 is the id of column and
𝑅𝑚𝑎𝑥 and𝐶𝑚𝑖𝑛 denote the maximum number of rows and columns,
respectively. Each position is associated with a propensity score
𝑝𝑟,𝑐 . A larger propensity score indicates that the position is more
likely to be viewed/clicked by a user. For example, the position with
highest propensity is the position that attracts most user attention
instead of the top left one. Notations with descriptions throughout
the work are presented in Table 1.

Given user search log data, we aim to learn a function 𝑓 (·) to
generate a ranking score for each item 𝑖 with query𝑞, and a function
𝑔(·) to estimate the propensity value for each position 𝑝𝑟,𝑐 . Existing
search log data may be biased by the presentation, where an item
at position (𝑟, 𝑐) is more/less likely to be clicked by a factor of 𝑝𝑟,𝑐 .

3 TWO-DIMENSIONAL PRODUCT RANKING
3.1 One-Dimensional Ranking for Web Search
In the area of search ranking, label information is conventionally
generated by search experts who manually evaluate each result for
a query [20]. Therefore, we can assume that an oracle function is
available for providing the ground-truth relevance score 𝑟 (𝑞, 𝑖) for



each query-item pair, and pair-wise and list-wise ranking methods
𝑓 (·) can directly be tuned with the relative and complete order
being generated with 𝑟 (·). Therefore, the label information 𝑟 (𝑞, 𝑖)
is generated in an unbiased way by manual annotation of search
experts. The resultant model is also unbiased.

3.2 Propensity in One-Dimensional Search
A conventional practice in E-Commerce is to utilize user clicks to
determine the label. Intuitively, if an item is relevant to the query,
it is more likely to be clicked. Therefore, instead of employing
manual annotators, metrics derived from logs, such as clicks and
conversions are widely used for product search [17, 29]. In order
to utilize metrics derived from search logs, the relevance between
an item and a query is usually assumed to be proportional to the
probability of click (or conversion, purchases etc.),

𝑃 (𝑟𝑒𝑙 = 1|𝑖 ∈ I, 𝑞 ∈ Q) ∝ 𝑃𝑟𝑜𝑏 [𝐶 (𝑖, 𝑞) = 1], (1)

where 𝑃𝑟𝑜𝑏 [𝐶 (𝑖, 𝑞) = 1] can be observed from the production
system, and the probability of being relevant 𝑃 [𝑟𝑒𝑙 = 1|𝑖 ∈ I, 𝑞 ∈ Q]
is what we try to estimate. The main intuition is that a relevant item
will be more likely to be clicked by a user. However, user behaviors
can be heavily biased by the production system, which is called
presentation bias or position bias, and an item ranked higher by
the production system is more likely to be clicked [8]. In order to
deal with presentation bias, we can explicitly integrate the effect of
positions, and the corresponding formulation can be written as,

𝑃 (𝑟𝑒𝑙 = 1|𝑖 ∈ I, 𝑞 ∈ Q) × 𝑝𝑟 ∝ 𝑃𝑟𝑜𝑏 [𝐶 (𝑖, 𝑞) = 1], (2)

where the product of relevance and the propensity 𝑝𝑟 is propor-
tional to the label of a click. The weight 𝑝𝑟 is usually larger when
the position is higher (the position 𝑟 is smaller). The weight has
also been referred as propensity scores recently [16]. For rest
of the paper, we will use propensity scores and position weight
interchangeably. Note that the hidden assumption of using 𝑝𝑟 is
that all results are ranked on a 1-dimensional space. In E-Commerce
applications, results are usually rendered in a 2-dimensional space,
and the propensity score can be denoted as 𝑝𝑟,𝑐 , instead.

3.3 Unbiased Two-Dimensional Ranking
We now introduce how presentation bias can be estimated in a 2-
dimensional space. By replacing 1-dimensional propensity 𝑝𝑟 with
𝑝𝑟,𝑐 , the formulation in Eq.(2) can be rewritten as,

𝑃 (𝑟𝑒𝑙 = 1|𝑖 ∈ I, 𝑞 ∈ Q) × 𝑝𝑟,𝑐 ∝ 𝑃𝑟𝑜𝑏 [𝐶 (𝑖, 𝑞) = 1], (3)

where the propensity score 𝑝𝑟,𝑐 is correlated with both row and
column information. We assume that propensity score along two
different dimensions are independent, and the formulation can be
further rewritten as,

𝑃 (𝑟𝑒𝑙 = 1|𝑖 ∈ I, 𝑞 ∈ Q) × 𝑝𝑟 × 𝑝𝑐 ∝ 𝑃𝑟𝑜𝑏 [𝐶 (𝑖, 𝑞) = 1], (4)

where the propensity score 𝑝𝑟,𝑐 is decomposed into two factors
𝑝𝑟 and 𝑝𝑐 . The decomposition helps reduce the total number of
parameters to estimate and we may better predict each of them
individually. If there is no presentation bias, our goal is reduced to
finding the optimal 𝑓 (·) that minimizes the empirical risk,

min
𝑓
𝑅𝑖𝑠𝑘 (𝑓 (·) |M) = 1

|M|
∑

(𝑞,𝑖) ∈M
ℓ [𝑓 (𝑞, 𝑖) |𝑃 (𝑟𝑒𝑙 = 1|𝑖, 𝑞)], (5)

where M includes all impressions and ℓ (·) represents a loss
function over prediction and ground truth. In order to incorporate
the induced propensities, we adopt Inverse Propensity Scoring
(IPS) [16] and the formulation can be rewritten as,

min
𝑓 ,𝑝𝑟 ,𝑝𝑐

𝑅𝑖𝑠𝑘 (𝑓 (·) |M) = 1
|M|

∑
(𝑞,𝑖) ∈M

ℓ [𝑓 (𝑞, 𝑖) |𝑃 (𝑟𝑒𝑙 = 1|𝑖, 𝑞)]
𝑝𝑟 × 𝑝𝑐

, (6)

where each instance is weighted by the inverse value of its
propensity. IPS was first introduced to solve position bias problem
in web search by Joachims et al. and it has been theoretically proven
to provide an unbiased estimation [16]. Since the propensity score
of a lower position is usually smaller, the main intuition here is
that the positive feedback of a less “visible” data instance should be
higher weighted. Therefore, in order to apply IPS with a particular
learning algorithm, 1

𝑝𝑟×𝑝𝑐 can be incorporated as a weighting term
that can be directly applied for most learning methods. A recent
work discussed how the weights can be used in a deep model [2].
We will discuss how we apply it in a gradient boosting method.
Since pairwise approaches usually perform better than point-wise
methods, we extend Eq.(6) into a pairwise manner,

min
𝑓 ,𝑝+

𝑟 ,𝑝
+
𝑐 ,𝑝

−
𝑟 ,𝑝

−
𝑐

𝑅𝑖𝑠𝑘 (𝑓 (·) |M) = 1
|M|

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ [𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−)]
𝑝+𝑟 × 𝑝+𝑐 × 𝑝−𝑟 × 𝑝−𝑐

,

(7)
where 𝑖+ and 𝑖− are a pair of items for query 𝑞 and 𝐶 (𝑖+) = 1
while 𝐶 (𝑖−) = 0; 𝑝+𝑐 and 𝑝+𝑟 denote the propensity values of 𝑖+
and 𝑝−𝑐 and 𝑝−𝑟 denote those of 𝑖−. Motivated by a recent work on
debiasing LambdaMART [13], we differentiate 𝑝+ from 𝑝− for the
same position. Instead of optimizing each item independently, we
focus on relative orders of items here. Therefore, the 2-dimensional
unbiased ranking problem can be reduced to minimizing the
following loss function,

min
𝑓 ,𝑝+

𝑟 ,𝑝
+
𝑐 ,𝑝

−
𝑟 ,𝑝

−
𝑐

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ [𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−)]
𝑝+𝑟 𝑝

+
𝑐 𝑝

−
𝑟 𝑝

−
𝑐

+ 𝜆 · 𝛼 (𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐 ),

(8)
where we introduce a regularizer 𝛼 (·) to control the model
complexity of propensity estimation, and 𝜆 controls the extent
of how we control model complexity. A larger 𝜆 leads to a simpler
model. The denominator |M| is omitted here since we assume data
is uniformly drawn. The new formulation enables us to model a
2-dimensional search result page. We have multiple variables to
optimize in Eq.(8), and the problem is not convex w.r.t. all three.
We will iteratively optimize each of them separately and details of
optimization will be covered in the next subsection.

3.4 Optimization
The optimization problem in Eq.(8) is convex w.r.t. a single variable
when the rest is being fixed. We will first fix the ranker 𝑓 (·) and
try to learn the parameters of propensity estimation. The partial
derivatives of the objective function in Eq.(8)w.r.t. propensity values
can be formulated as,

𝜕𝑅𝑖𝑠𝑘

𝜕𝑝+𝑟
=

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ (𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−))
−𝑝+,2𝑟 𝑝+𝑐 𝑝

−
𝑟 𝑝

−
𝑐

+ 𝜆 𝜕𝛼
𝜕𝑝+𝑟

, (9)



𝜕𝑅𝑖𝑠𝑘

𝜕𝑝+𝑐
=

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ (𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−))
−𝑝+𝑟 𝑝+,2𝑐 𝑝−𝑟 𝑝

−
𝑐

+ 𝜆 𝜕𝛼
𝜕𝑝+𝑐

, (10)

𝜕𝑅𝑖𝑠𝑘

𝜕𝑝−𝑟
=

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ (𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−))
−𝑝+𝑟 𝑝+𝑐 𝑝−,2𝑟 𝑝−𝑐

+ 𝜆 𝜕𝛼
𝜕𝑝−𝑟

, (11)

𝜕𝑅𝑖𝑠𝑘

𝜕𝑝−𝑐
=

∑
(𝑞,𝑖+,𝑖−) ∈M

ℓ (𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−))
−𝑝+𝑟 𝑝+𝑐 𝑝−𝑟 𝑝−,2𝑐

+ 𝜆 𝜕𝛼
𝜕𝑝−𝑐

, (12)

where we estimate one of the parameters while keeping the rest
and 𝑓 (·) fixed. Similarly, by keeping all parameters for propensity
estimation fixed, we have the derivatives for learning the ranking
function 𝑓 (·) as,

𝜕𝑅𝑖𝑠𝑘

𝜕𝑓
=

∑
(𝑞,𝑖+,𝑖−) ∈M

𝜕ℓ (𝑓 (𝑞, 𝑖+), 𝑓 (𝑞, 𝑖−))
𝜕𝑓 (·)

1
𝑝+𝑟 𝑝

+
𝑐 𝑝

−
𝑟 𝑝

−
𝑐

, (13)

where the derivative of the ranking model is inversely weighted by
the propensity score 𝑝+𝑟 𝑝+𝑐 𝑝−𝑟 𝑝−𝑐 , i.e., a larger ranking loss will lead
to a smaller propensity score, and vice versa.

Based on the above derivatives, it is easy to obtain update rules
when a certain ranking model and regularization terms are selected.
In this work, we will adopt ℓ2-norm as the regularization term.
Therefore, the closed-form solution of the propensity value can
be obtained by setting the derivatives in Eq.(9) - (12) as zero. We
adopt LambdaMART [6] as the ranking model. The algorithm is
shown in Algorithm 1. We first initialize parameters for propensity
prediction in step 1. The initialization here is particularly important
since the two optimization tasks are nested and will rely on the
results. A bad starting point may sufficiently prevent all subsequent
tasks to converge to an optimal point. We will elaborate more in
the next subsection, introducing how we initialize the parameters
using causal inference. Step 3 optimizes for the parameters of the
ranking function 𝑓 (·), and in step 4 we update the parameters for
propensity scores. The early termination rule can be defined based
on a validation dataset in step 5.

Algorithm 1 Algorithm for Two-Dimensional Product Ranking
Input: Search log data: M, 𝜆, Maximum number of iterations
𝑀𝑎𝑥𝐼𝑡𝑒𝑟 , Early termination condition 𝐸𝑀

Output: Ranker: 𝑓 (·), Propensity scores: 𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐
1: Initialize 𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐 ,
2: For 𝑖𝑡𝑒𝑟 from 1 to𝑀𝑎𝑥𝐼𝑡𝑒𝑟 :
3: Update 𝑓 (·) based on Eq.(13)
4: Update 𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐 based on Eq.(9) - (12):
5: If meets 𝐸𝑀 :
6: Break
7: Return 𝑓 (·), 𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐

In the next subsection, we will introduce how we can initialize
the parameters in step 1. This is particularly important since we
have two nested tasks here, i.e., estimating propensity scores and
learning a ranking function, and convergence of one task relies on
the convergence of another. We investigate different possibilities
and propose a novel method based on causal inference.

3.5 Propensity Estimation with Intervention
Since the four propensity scores 𝑝+𝑟 , 𝑝+𝑐 , 𝑝−𝑟 , 𝑝−𝑐 can be similarly
initialized, we will omit the superscripts and subscripts here. A
classic method to estimate presentation bias is to use randomized
experiments, where we may randomly shuffle positions of all
candidate results. Therefore the empirical CTR from randomized
experiments can be directly used to estimate presentation bias [8].
Pair-wise intervention experiments have been studied to infer the
propensity score in web search [16].

Pair-wise tests are relatively easier to perform since they require
a fewer number of interventions. For a ranking list of length 𝐾 ,
exactly 𝐾 −1 swap experiments are needed. We will use an example
to introduce how the experiment can be done in more details.
Consider there are 3 examples being ranked by relevance in a
descending order. Assume function 𝑔(·) predicts the probability
that an item would be clicked with given relevance 𝑟𝑒𝑙 . We set the
propensity score at the top position 𝑝1 as 1. By incorporating the
function with Eq.(2), the expected CTR of of the first item in the
ranking list, 𝐶𝑇𝑅(𝑖1@1), can be estimated as,

𝐸 (𝐶𝑇𝑅(𝑖1@1)) = 𝑔(𝑟𝑒𝑙) × 𝑝1, (14)

where𝐶𝑇𝑅(𝑖1@1) means the click through rate of first item 𝑖1 being
ranked at the first position (also its original position in this case),
and 𝑔(𝑟𝑒𝑙) can be regarded as the unbiased expected 𝐶𝑇𝑅 and the
propensity score 𝑝1 introduces the influence of presentation bias.
After 𝑁 impressions, the empirical 𝐶𝑇𝑅 can be estimated as,

𝐶𝑇𝑅(𝑖1@1) =
∑
𝑁

𝑔(𝑟𝑒𝑙) × 𝑝1
𝑁

, (15)

where
∑

𝑁 𝑔(𝑟𝑒𝑙) × 𝑝1 can be viewed as the expected number of
clicks after 𝑁 impressions. In order to estimate propensity score
for the second position 𝑝2, an intervention experiment can be
performed to swap the position of 𝑖1 and 𝑖2. Similarly, an empirical
CTR of item 𝑖1 being ranked at the second position can be calculated,

𝐶𝑇𝑅(𝑖1@2) =
∑
𝑁

𝑔(𝑟𝑒𝑙) × 𝑝2
𝑁

, (16)

where the unbiased number of clicks
∑

𝑁 𝑔(𝑟𝑒𝑙) is discounted by
𝑝2. A nice property of the formulation is that, 𝑝2 can be directly
obtained by using the two empirical CTRs as,

𝑝2 =
𝐶𝑇𝑅(𝑖1@2) × 𝑝1
𝐶𝑇𝑅(𝑖1@1) , (17)

where all other terms except propensity can be eliminated. This
is also a recursive rule that can help infer the propensity of all
positions. In this case, wewill need 2 = 3−1 experiments to estimate
propensity scores for a list of size 3. Though swap experiments only
require 𝐾 − 1 experiments, a practical challenge is that a large 𝑁 is
needed to reduce the variance of the estimation of CTR, which is
costly for many emerging applications. By contrast, we will focus
on using only search log data.

3.6 Propensity Score Initialization with Causal
Inference

Consider a special case of search ranking, where two adjacent items
have exactly the same relevance score, i.e., 𝑟𝑒𝑙 (𝑖1) = 𝑟𝑒𝑙 (𝑖2). Items
in a search result page are ordered with relevance scores, and an



item will be randomly ranked higher than the other if they have
the same score. In such cases, the difference of feedback signals
like CTR will be only affected by presentation bias. We may start
with estimating 𝑝2 with such special cases, and the approach can
be recursively applied to lower positions similarly.

First, we collect pairs of impressions M = {(𝑚𝑠
1,𝑚

𝑠
2)} in each

search session 𝑠 , where the top 2 items have the same relevance
score (𝑚𝑠

1 .𝑟𝑒𝑙 =𝑚
𝑠
2 .𝑟𝑒𝑙). 𝑠 denotes a session and𝑚𝑠

1 represents the
impression of a first-ranked item in a session 𝑠 . 𝑚𝑠

1 .𝑟𝑒𝑙 denotes
the relevance score of the impressed item and 𝑚𝑠

1 .𝑝 denotes the
position. M represents the set of impression pairs that have the
same relevance score on top 2 positions. We further denoteM1 as
the set of impressions in M that have been displayed on the first
position andM2 as the set of impressions on the second position.
Therefore, the assignment of positions for pairs inM can be viewed
as an instrumental variable [4] and M can be used to infer 𝑝2.

Instrumental variables approaches have been widely used to
estimate causal relationships in disciplines of statistics, economet-
rics, etc. An instrumental variable randomly separates subjects
into control and treatment groups, and a natural experiment
can be accordingly conducted for causal inference [7]. Since the
assignment of ranking orders in M is random, the estimation of 𝑝2
can be done with the natural experiment usingM. We first represent
the estimation of CTR for two groups,

𝐶𝑇𝑅(M1) =
∑

𝑚∈M1

𝑚.𝑏

|M1 |
=

∑
𝑚∈M1

𝑔(𝑚.𝑟𝑒𝑙) × 𝑝1
|M1 |

(18)

𝐶𝑇𝑅(M2) =
∑

𝑚∈M2

𝑚.𝑏

|M2 |
=

∑
𝑚∈M2

𝑔(𝑚.𝑟𝑒𝑙) × 𝑝2
|M2 |

, (19)

where 𝑚.𝑏 = 1 if the impression has been clicked by the user
otherwise𝑚.𝑏 = 0. Since for a particular pair, their relevance scores
are the same𝑚𝑠

1 .𝑟𝑒𝑙 =𝑚
𝑠
2 .𝑟𝑒𝑙 , and |M1 | = |M2 |, by dividing the two

equations, we can easily estimate 𝑝2,
𝐶𝑇𝑅(M1)
𝐶𝑇𝑅(M2)

=
∑

(𝑚1,𝑚2) ∈M

𝑔(𝑚1 .𝑟𝑒𝑙) × 𝑝1
𝑔(𝑚2 .𝑟𝑒𝑙) × 𝑝2

=
𝑝1
𝑝2
, (20)

where all other terms are eliminated and the propensity score can be
recursively obtained with𝑤 (𝑖 + 1) = 𝑤 (𝑖)×𝐶𝑇𝑅 (M𝑖+1)

𝐶𝑇𝑅 (M𝑖 ) . An obvious
drawback of the natural experiment is that the required special
cases can be rare and a small number of cases may introduce large
variance to the estimation. Next, we will present how we adopt
fuzzy Regression Discontinuity Design to deal with the issue.

In order to expandM, we introduce a threshold of relevance and
collect pairs of adjacent impressions that are with similar relevance
scores. Similarly, we will follow the example of estimating 𝑝2 for
simplicity of presentation. Eq.(20) can be reformulated as,

𝐶𝑇𝑅(M1)
𝐶𝑇𝑅(M2)

=
∑

(𝑚1,𝑚2) ∈M

𝑔(𝑚1 .𝑟𝑒𝑙) × 𝑝1
𝑔(𝑚2 .𝑟𝑒𝑙) × 𝑝2

, (21)

where 𝑔(𝑚1 .𝑟𝑒𝑙) and 𝑔(𝑚2 .𝑟𝑒𝑙) cannot be eliminated due to the
difference of relevance. In order to move forward, the first step is to
learn the function𝑔(𝑟𝑒𝑙 (𝑖, 𝑞)). Following a conventional practice [1],
we will adopt the ranking score 𝑟𝑠 (𝑖, 𝑞) produced by the production
system to represent the value of 𝑟𝑒𝑙 (𝑖, 𝑞).

Learning 𝑔(𝑟𝑠 (𝑖, 𝑞)) In order to learn the function 𝑔(𝑟𝑠 (𝑖, 𝑞)),
we collect all impressions on the first position. We denote the set

of impressions as M𝑎𝑙𝑙 . The reason we focus on the first position is
that, given 𝑝1 is set as 1, we will have

𝐶𝑇𝑅(M𝑎𝑙𝑙 ) =
∑

𝑚∈Mall

𝑔(𝑚.𝑟𝑒𝑙)
|M𝑎𝑙𝑙 |

, (22)

where the CTR can be an unbiased estimation of
∑
𝑚∈Mall

𝑔 (𝑚.𝑟𝑒𝑙)
|M𝑎𝑙𝑙 | .

Next, we group impressions into different bins of ranking scores.
LetM𝑏𝑖𝑛 be a bin of impressions where {∀𝑚 ∈ M𝑏𝑖𝑛 |M𝑏𝑖𝑛 .𝑙𝑜𝑤𝑒𝑟 ≤
𝑚.𝑟𝑠 < M𝑏𝑖𝑛 .𝑢𝑝𝑝𝑒𝑟 }. 𝑚.𝑟𝑠 denotes the ranking score of an
impression.M𝑏𝑖𝑛 .𝑙𝑜𝑤𝑒𝑟 andM𝑏𝑖𝑛 .𝑢𝑝𝑝𝑒𝑟 are boundaries of ranking
scores of a particular bin. Since the bin size (M𝑏𝑖𝑛 .𝑢𝑝𝑝𝑒𝑟 −
M𝑏𝑖𝑛 .𝑙𝑜𝑤𝑒𝑟 ) can be small, we make a relaxed assumption that
impressions falling in the same bin have the same ranking score,
𝑚𝑖 .𝑟𝑒𝑙 =𝑚 𝑗 .𝑟𝑒𝑙,∀𝑚𝑖 ,𝑚 𝑗 ∈ M𝑏𝑖𝑛 . Estimation of CTR in this bin can
be formulated as,

𝐶𝑇𝑅(M𝑏𝑖𝑛) =
∑

𝑚∈M𝑏𝑖𝑛

𝑔(𝑚.𝑟𝑒𝑙)/|M𝑏𝑖𝑛 | (23)

=
|M𝑏𝑖𝑛 | · 𝑔(𝑚.𝑟𝑒𝑙)

|M𝑏𝑖𝑛 |
(24)

= 𝑔(𝑚.𝑟𝑒𝑙) = 𝑓
(∑

𝑚∈M𝑏𝑖𝑛
𝑚.𝑟𝑒𝑙

|M𝑏𝑖𝑛 |

)
, (25)

where the average ranking score is used for a bin. By binning
impressions, the CTR of each bin contributes a data point to learn
the function 𝑔(𝑟𝑒𝑙). We use Weighted Linear Regression (WLS)
here where each bin is weighted by the number of impressions
|M𝑏𝑖𝑛 |. The propensity can then be estimated with Eq.(20). Here,
the function 𝑔(𝑟𝑠 (𝑖, 𝑞)) can be viewed as a calibration method that
estimates the probability of being positive given a ranking score.

3.7 Summary
The proposed end-to-end framework consists of two main
components. The first component initializes parameters based on a
natural experiment: (1) We design natural experiments to estimate
propensity of each position with search log data as described in
Section 3.6; (2) The ranker and propensity scores can be learned
through iterative optimization.

The convergence of the method can be theoretically proven.
The two subtasks are both convex as shown in Eq.(9) - Eq.(13). In
addition, the objective function in Eq.(8) has lower bounds(e.g.,
zero), the iterative optimization in Algorithm 1 converges. The
time complexity for learning the ranker is similar to that of
the selected ranking model, which is usually optimized through
gradient-based methods [20]. Propensity estimation can also be
efficiently optimized with closed-form solutions based on chosen
regularizers. The optimal layout can also be directly derived based
on the propensity scores - where a position with higher propensity
scores indicates that results ranked here will gain more visibility.

4 EXPERIMENTS
In this section, we will present experiments we conducted to
validate the effectiveness of the proposed approach. In particular,
we focus on answering the following questions,

(1) How effective is the proposed method comparing with
existing biased and unbiased product ranking methods?



Table 2: Statistics of the search log dataset for training.

Impressions Items P:N Ratio

Logged-in 40,901,611 90,000 20%: 80%

Logged-out 47,187,300 90,000 9%: 91%

Table 3: Statistics of the unbiased dataset for evaluation.

Impressions Items P:N Ratio

Logged-in 6,130 1,839 35%: 65%

Logged-out 7,818 2,218 11%: 89%

Table 4: Methods implemented for comparison in this
work. Traditional methods of randomized experiments,
Dual Learning Algorithm, traditional natural experiments,
and the proposed method of natural experiments with
calibration are adopted.

Method Acronym

Conventional Ranking
SVMRank [14] SR

Gradient Boosting Decision Tree [10] GBDT
LambdaMART [6] LM

Unbiased Ranking

Dual Learning Algorithm [3] DLA
SVMRank-IPS [16] SRI

Trust Unbiased Ranking [1] TU
Unbiased LambdaMART [13] UL
2-D Dual Learning Algorithm DLA2

2-D Trust Unbiased Ranking TU2

2-D Unbiased LambdaMART UL2

Proposed Methods
2-D Unbiased Ranker UR

2-D Unbiased Ranker with Initialization UI
2-D Unbiased Ranker with Calibrated Initialization UC

(2) How is product ranking model working differently by
integrating 2-dimensional propensity and initialization?

4.1 Datasets
The search log data is obtained from Airbnb, an online marketplace.
We randomly subsample data to build a dataset with both logged-
in users and logged-out-users. There are in total 731, 869 search
sessions with 90, 000 items being displayed. We also calculate the
ratio of positive versus negative (P:N ratio) impressions where a
positive impression leads to a conversion while a negative one does
not. Detailed statistics are shown in Table 2.

We choose to differently model logged-in users and logged-out
users due to their distinct browsing behaviors. Generally speaking,
logged-in users are users with higher intents to booking listings,
and their behaviors are more straightforward towards conversion.
On the other hand, logged-out users are usually of lower intents. It is
a conventional practice in industry to separately model them when
they have very distinct behavioral patterns [28]. In our experiment,
logged-in users and logged-out users will have two independent
models, and logged-in users may have some additional features
than loggeed-out users.

In order to evaluate performance, we will also need an unbiased
dataset that is different from the one for training the model. A
main assumption of presentation bias research is an unclicked
item might have not been checked/seen by a user. Therefore, we
build a dataset by extracting items that are ranked higher than the
lowest clicked position in a search session. The resultant dataset

is relatively small and is only used for testing a model. Detailed
statistics about the dataset are shown in Table 3. Due to the small
size of the unbiased dataset, it is usually only used for evaluation
instead of training. We are aware that there are public datasets with
unbiased labels and they have been used in previous research. The
reason we do not include such datasets is that they lack the online
scoring information for conducting a natural experiment.

4.2 Experimental Settings
We follow classic IR research and adopt Normalized Discounted
Cumulative Gain (NDCG) to evaluate the ranking results. Since we
focus on individual search sessions where the label information is
likely to be binary, we also adopt Area Under Curve (AUC) of ROC
which is widely used for classification tasks with skewed datasets.
In addition, we also propose to measure the diversity of results
as an offline experiment. We posit that ignoring the influence of
presentation layout may unfairly bias the productionmodel to focus
on the few top items. Therefore, we aim to compare the variety
of positive results of the production model with the proposed
approach. A metric for measure diversity is defined as Normalized
Diversity at K, 𝑁𝐷𝑖𝑣@𝐾 . We assume that a positive instance will
be booked under the new ranking order if it is ranked among top
𝐾 . Therefore, the Diversity at K (𝐷𝑖𝑣@𝐾 ) can be estimated as

𝐷𝑖𝑣@𝐾 =
∑

𝑖∈TP@K
− log( |𝑖 ∈ TP@K|

|P| ) × |𝑖 ∈ TP@K|
|P| , (26)

where P is the set of items that have been positive in any search
session and TP is the set of true positives of an algorithm at top K
positions. Given 𝑖 is an item in TP, |𝑖∈P |

|P | calculates the probability
of the item and 𝐷𝑖𝑣@𝐾 estimates the diversity of results using
information entropy. We smooth the probability of each item by
setting the initial probability as 1

|𝑇𝑃 | instead of 0. We then calculate
the maximum entropy with the ground truth data 𝐷𝑖𝑣𝑚𝑎𝑥@𝐾 and
obtain the Normalized Diversity at K (NDiv@K) by 𝑁𝐷𝑖𝑣@𝐾 =

𝐷𝑖𝑣@𝐾/𝐷𝑖𝑣𝑚𝑎𝑥@𝐾 .
The methods we adopted in the experiments fall into three

categories: classic ranking methods that do not consider the
influence of presentation bias, state-of-the-art unbiased ranking
methods that debias the search log data in a 1-dimensional space,
the proposed methods with two of its variants that remove
the initialization module. All methods with their acronyms are
illustrated in Table 4. For the first category, we include three
ranking methods including SVMRank, Gradient Boosting Decision
Tree (GBDT), and LambdaMART. These three methods are based
on comparing pairs of items in a ranked list where SVMRank
uses Support Vector Machines as a base classifier, and GBDT uses
decision trees with gradient boosting, and LambdaMART adopts
the 𝜆 trick to weight data pairs. These three methods have been
popular in the both academia and industry and have been winners
in several competitions of search ranking.

The second category of methods are recently proposed ap-
proaches that aim to estimate propensity scores with search log
data. We include Dual Learning Algorithm (DLA), SVMRank with
Inverse Propensity Scoring (SRI), Trust-Unbiased Ranking (TU),
and Unbiased LambdaMART (UL) in this work. Since user feedback
signals can be regarded as a product of presentation bias and



relevance, they iteratively optimize the two, i.e., updating one with
the other being fixed. Relevance is modeled as a classic ranking
problem while presentation bias is modeled with only positions.
These methods require both of the dual problems to converge in
the early stage, which cannot be theoretically guaranteed. The only
exception here is SRI, which requires an intervention experiment
to be conducted for estimating propensity scores beforehand.
Therefore, we collect propensity estimation results according to
conventional practices [8], where randomly shuffled results are
used to estimate propensity scores for SRI. This is different from
the natural experiment we propose and it won’t be updated.

We also include the 2-dimensional variants of methods in the
second group to validate the effectiveness of the proposed method.
Instead of learning a 1-dimensional propensity scores for DLA, UL
and TU, we assume the position bias is the product of horizontal
bias and vertical bias. Therefore, each algorithm will learn two
propensity score vectors, and the final propensity is estimated with
the two independent vectors.

The third group of methods include the proposed approach along
with its variants. 2-D Unbiased Ranker is the proposed method
without using initialization based on causal inference, where all
propensity scores are initially as 1 for both row- and column-wise
propensity scores. 2-D Unbiased Ranker with Initialization directly
uses the propensity estimation results based on the strict natural
experiments, where only special cases are included. 2-D Unbiased
Ranker with Calibrated Initialization refers to the proposed method
that adopts calibration for parameter estimation, where more data
are included in the natural experiment. For all offline experiments,
we adopt 10-fold cross-validation where all data are randomly split
into ten folds and in each round one fold is used for testing and the
rest for training. All reported results are the average of ten folds.

4.3 Experimental Results
Table 5 and Table 6 illustrate the performance for different methods
on NDCG@3, NDCG@5 and AUC for logged-in and logged-out
users, respectively. We report all results on training (Train), valida-
tion (Vali) and test (Test) datasets. By observing the experimental
results, we make following observations.

The proposed method UC achieves the best NDCG@3 among
all methods for looged-in data and UI achieves the best result for
logged-out data. The results prove that explicitly modeling the 2-
dimensional presentation bias enable us to improve the relevance
between queries and items. The proposed calibration method for
natural experiments seems to be less effective for logged-out users,
where the margin between UI and the runner-up method UR is
not significant, and the result of UC falls behind both UI and UR.
Unbiased LambdaMART also performs well on logged-out users,
which proves that presentation bias exist in the search log data. Note
that in the experiment for logged-in users, after adopting propensity
estimation results, the performance of SRI is less competitive than
that of the original SVMRank algorithm. This may be caused
by the high variance of propensity estimation with randomized
experiments, which further highlights the importance of natural
experiments, where a massive amount of search log data can be
used to reduce the variance.

The NDCG@5 results extend the items for evaluation from top
3 to top 5. The proposed method UC achieves the best results
on both of the logged-in user data and logged-out user data.
The runner-up for logged-in data is UR, and the runner-up for
logged-out data is UI, which are variants of the proposed method
UC by dropping off initialization with causal inference, and the
calibration of initialization. Note that the performance of unbiased
methods is very similar to that of conventional learning-to-ranking
algorithms. This proves that directly applying existing unbiased
methodsmay not solve the problem of 2-dimensional product search
in E-Commerce. The proposed approach also outperforms the 2-
dimensional variants of existing unbiased ranking methods. Note
that the 2-D variants mostly underperform comparing with the
original methods. The results reveal that classic unbiased models
cannot be easily extended to deal with the novel challenge.

Since label information is mostly binary for search log data,
the task can also be seen as a binary classification problem [16].
Therefore, we adopt AUC to measure the effectiveness. AUC is
ideal for our task since it is robust to unbalanced dataset and our
data is highly skewed. AUC ranges from 50% to 100% where 50%
means the results are randomly chosen and 100% indicates the
theoretically best performance. The AUC results show that the
proposed methods with its variants achieve the best performance
on both logged-in and logged-out data. Similarly, the results of
conventional ranking methods are very close or even better than
the results of unbiased 1-dimensional ranking methods, which
indicate that directly modeling a 1-dimensional propensity score
downgrades the performance of the ranking model.

4.4 Diversity
We also study the diversity of search results with 𝑁𝐷𝑖𝑣@𝐾 . Table 7
illustrates the 𝑁𝐷𝑖𝑣@𝐾 for different methods with a varying 𝐾 .
We use the proposed method UC that has the best performance
to compare against the production model that has not considered
influence of presentation bias. We vary the range from 1 to 10
to focus on the top ranked items. According to the definition of
𝑁𝐷𝑖𝑣@𝐾 , a larger 𝐾 represents that an item is more likely to
converge, and the corresponding diversity increases. Based on the
experimental results we make following observations:

Not only improving effectiveness, UC methods also significantly
increase the diversity of true positives by favoring items that were
ranked lower by the production system, which are highly biased by
positions. When K becomes larger, UC consistently outperforms the
production model and maintains a large margin. We observe that
the diversity of the production system increases faster when we
vary K. This is because of the small diversity value. A large K would
make all methods converge to 1. Since top ranked results are the
most important in search and ranking applications, the superiority
of UC on top 10 positions proves its utility in real applications.

5 RELATEDWORK
The work is closely related to presentation/position bias in infor-
mation retrieval. Though presentation bias has been intensively
studied in the literature of information retrieval [9, 11, 19, 22, 30],
learning unbiased ranking models with biased feedback data is



Table 5: Experimental results of different ranking methods for logged-in users in terms of NDCG@3, NDCG@5 and AUC on
training, validation and test sets. 10-fold cross-validation has been adopted and a holdout set is used as a validation set. All
reported results are the average calculated based on the ten folds.

Method NDCG@3 NDCG@5 AUC
Train Vali Test Train Vali Test Train Vali Test

Conventional Ranking
SR 0.3817 0.3904 0.3916∗∗ 0.4043 0.3946 0.4292∗∗ 0.8494 0.8382 0.8205∗∗

GBDT 0.3653 0.3560 0.3245∗∗ 0.4174 0.4212 0.4433∗∗ 0.8330 0.8457 0.8298∗∗
LM 0.3490 0.3368 0.3588∗∗ 0.3717 0.4500 0.4129∗∗ 0.8017 0.7876 0.7714∗∗

Unbiased Ranking

DLA 0.3508 0.3476 0.3497∗∗ 0.4236 0.4143 0.4385∗∗ 0.8060 0.8044 0.7883∗∗
SRI 0.3799 0.3700 0.3845∗∗ 0.3861 0.4033 0.4016∗∗ 0.8073 0.7949 0.7799∗∗
TU 0.3481 0.3702 0.3630∗∗ 0.4239 0.4084 0.4251∗ 0.8076 0.7847 0.7885∗∗
UL 0.3787 0.3447 0.3744∗∗ 0.4005 0.3839 0.3635∗∗ 0.7953 0.7768 0.7835∗∗

2-D Unbiased Ranking
DLA2 0.3500 0.3494 0.3399∗∗ 0.3825 0.4162 0.4087∗∗ 0.7749 0.8045 0.7725∗∗

TU2 0.3143 0.3773 0.3560∗∗ 0.4007 0.3944 0.3979∗∗ 0.8237 0.7723 0.7122∗∗

UL2 0.3649 0.3443 0.3384∗∗ 0.4064 0.3533 0.3457∗∗ 0.7826 0.7173 0.7824∗∗

Proposed Methods
UR 0.3989 0.3971 0.4099∗∗ 0.4192 0.4182 0.4451∗∗ 0.8623 0.8649 0.8530∗∗
UI 0.4302 0.4003 0.4171∗∗ 0.4370 0.4177 0.4249∗∗ 0.8848 0.8736 0.8660∗∗
UC 0.4374 0.4326 0.4401 0.4930 0.4604 0.4778 0.8971 0.8825 0.8833

* indicates that the method is outperformed by the best one by 0.05 statistical significance level with paired t-tests, ** indicates 0.01.

Table 6: Experimental results of different ranking methods for logged-out users in terms of NDCG@3, NDCG@5 and AUC on
training, validation and test sets. 10-fold cross-validation has been adopted and a holdout set is used as a validation set. All
reported results are the average calculated based on the ten folds.

Method NDCG@3 NDCG@5 AUC
Train Vali Test Train Vali Test Train Vali Test

Conventional Ranking
SR 0.3676 0.3820 0.3548∗∗ 0.4271 0.4356 0.4495∗∗ 0.7827 0.7922 0.7909∗∗

GBDT 0.3390 0.3328 0.3408∗∗ 0.4598 0.4666 0.4608∗∗ 0.7865 0.7933 0.7988∗∗
LM 0.3275 0.3105 0.3231∗∗ 0.4368 0.4496 0.4374∗∗ 0.7762 0.7817 0.7849∗∗

Unbiased Ranking

DLA 0.3614 0.3226 0.3367∗∗ 0.4591 0.4746 0.4405∗∗ 0.7961 0.7993 0.7752∗∗
SRI 0.3543 0.3178 0.3274∗∗ 0.4727 0.4338 0.4496∗∗ 0.8027 0.7806 0.7756∗∗
TU 0.3756 0.3506 0.3543∗∗ 0.4575 0.4558 0.4240∗ 0.7869 0.7793 0.7797∗∗
UL 0.3814 0.4090 0.3915∗∗ 0.4379 0.4439 0.4304∗∗ 0.8027 0.7850 0.7859∗∗

2-D Unbiased Ranking

DLA2 0.3335 0.3146 0.3218∗∗ 0.4541 0.4456 0.4222∗∗ 0.7482 0.7238 0.7065∗∗

TU2 0.3387 0.3331 0.3297∗∗ 0.4292 0.4473 0.3889∗∗ 0.7225 0.7854 0.7785∗∗

UL2 0.3494 0.3964 0.3765∗∗ 0.4393 0.4219 0.4190∗∗ 0.7331 0.7538 0.7787∗∗

Proposed Methods
UR 0.4177 0.4269 0.4071∗ 0.4603 0.4549 0.4366∗∗ 0.8357 0.8315 0.8247∗∗
UI 0.4204 0.4246 0.4091 0.4564 0.4678 0.4699∗∗ 0.8432 0.8301 0.8318∗∗
UC 0.4415 0.3979 0.4021∗∗ 0.4913 0.4890 0.4816 0.8423 0.8273 0.8384

* indicates that the method is outperformed by the best one by 0.05 statistical significance level with paired t-tests, ** indicates 0.01.

Table 7: Comparison of diversity of search results in terms of 𝑁𝐷𝑖𝑣@𝐾 with a varying 𝐾 , from top 1 to top 10. For each search
session, we calculate Normalized Diversity (NDiv) for the proposed UC and the production model CONTROL.

Method NDiv@1 NDiv@2 NDiv@3 NDiv@4 NDiv@5 NDiv@6 NDiv@7 NDiv@8 NDiv@9 NDiv@10
UC 0.37 0.40 0.42 0.44 0.45 0.45 0.46 0.48 0.49 0.49

Production 0.21∗∗ 0.24∗∗ 0.27∗∗ 0.30∗ 0.32∗∗ 0.33∗∗ 0.35∗∗ 0.36∗∗ 0.37∗∗ 0.39∗∗

Symbol * indicates that the method is outperformed by the best one by 0.05 statistical significance level with paired t-test, ** indicates 0.01.

a relatively new problem. For many emerging areas, such as E-
Commerce search and social media search, it is impractical to obtain
large-scale manual annotation since there task is more personalized.
Another example is email search, where it is not allowed to expose
large-scale email data to manual annotators to label. Therefore,
user feedback signals, such as clicks and conversions (purchases,
downloads, etc.) are commonly used for training a model.

There are different ways of dealing with presentation bias. A
straightforward way is to estimate the probability of being observed.
A conversion on a lower position is assigned more weights than
one a higher position, since its probability of being observed is
relatively small [15, 16, 24, 25, 27]. They follow Inverse Propensity
Score Weighting (IPSW) [5, 12, 18, 21], which has been widely
used in the areas where statistics standardized to a population are
different from where the observations were collected. All methods
in this stream require a randomized experiment or intervention
experiment to be conducted. The main intuition of our work is
to avoid using randomized experiments which are expensive for

many emerging applications. There have been efforts in studying
automatic debiasing without using randomized experiments. Ai et
al. propose to model this problem as a dual learning problem [3], its
convergence cannot be guaranteed since it requires both of the dual
problems to converge in the early stage. Our work is thus to find a
way that is theoretically unbiased and guaranteed to converge.

6 CONCLUSION
In this work, we study the problem of 2-dimensional product
search. We present an end-to-end framework that jointly estimates
propensity scores and learns a ranking model. In order to facilitate
the iterative optimization of the nested problem, we introduce a
novel way to initialize propensity scores with causal inference. In
particular, we propose a natural experiment and introduce how we
calibrate the estimation. We present experimental results based on
real-world data.



Several interesting directions remain to be studied in the future.
Since we focus on implicit user feedback signals, it would be inter-
esting to explore the possibility of integrating manual annotation
like crowdsourcing results or the attention heatmap to supervise
or facilitate the inference process. It would also be interesting to
study how the proposed method can be adopted to improve other
applications such as personalization and recommender systems.
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