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ABSTRACT
Relational learning has been proposed to cope with the
interdependency among linked instances in social network
analysis, which often adopts network connectivity and social
media content for prediction. A common assumption in
existing relational learning methods is that data instances
are equally important. The algorithms developed based on
the assumption may be significantly affected by outlier data
and thus less robust. In the meantime, it has been well
established in social sciences that actors are naturally of
different social status in a social network. Motivated by
findings from social sciences, in this paper, we investigate
whether social status analysis could facilitate relational
learning. Particularly, we propose a novel framework
RESA to model social status using the network structure.
It extracts robust and intrinsic latent social dimensions
for social actors, which are further exploited as features
for supervised learning models. The proposed method
is applicable for real-world relational learning problems
where noise exists. Extensive experiments are conducted
on datasets obtained from real-world social media platforms.
Empirical results demonstrate the effectiveness of RESA and
further experiments are conducted to help understand the
effects of parameter settings to the proposed model and how
local social status works.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data Mining ; J.4 [Social and Behavioral Sciences]:
Sociology

Keywords
Social Dimensions, Social Media, Relational Learning

1. INTRODUCTION
Social media websites have become a popular open platfor-

m for people to connect with their friends, express opinions
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and share feelings. Online user-generated data becomes
a key data source for researchers to study scientific and
commercial problems [37] which are related to social actors.
To better understand online behaviors of social network
users, categorization of social network users is fundamental
for various tasks. Take stock price prediction [4] as an
example, the sentiment dynamics of users in a specific group
may indicate corresponding stock prices. Although some
social media platforms enable users to categorize themselves
by uploading tags, such information is often incomplete and
unavailable in real applications, which necessitates the use
of relational learning (RL).

RL has become an effective tool for classifying nodes in
a network. They leverage network structures as well as
attributes of social actors, which often result in improvement
over models without considering network structures [11].
Given attributes and social links of social actors, and labels
from training examples, RL methods view the prediction as a
supervised learning problem over networked data, assuming
links between nodes to be indicators of proximity over labels,
i.e., social actors with links connected with each other are
assumed to have similar labels [20, 21]. However, since social
media content is often noisy, RL could be prone to poor
performance due to the massive amount of information of
low quality. For example, expressions such as ‘Coooool’
and ‘omg!’ are confusing, phenomena like ‘sarcasm’ even
reverse the meaning of a word vector [28]. In addition, the
proximity assumption of social links does not hold. Random
social links are established due to reflexive reciprocity and
link farming [12].

Meanwhile, social status has been intensively studied in
profiling social actors [13]. As indicated by self-categorization
theory, social status influences goals individuals pursue, and
further affects the way they pursue [17] and the positive
social identity they obtain. The social psychological finding
motivates us to investigate the use of social status for
relational learning. However, it is challenging to incor-
porate social status into relational learning. First, social
status is difficult to estimate. Although various kinds of
algorithms have been proposed to estimate social influence,
such methods focus on estimating individual centrality in
terms of certain network structure instead of social status.
For example, experts in a professional area may have a
high social status but fewer friends in a social network, who
will be overlooked by existing influence modeling methods.
Second, we are lack of an effective way to incorporate social
status into RL. Existing work only considers links between
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Figure 1: Illustrative examples of relational learning with different kinds of user weights.

nodes as an indicator of homophily, which fails to leverage
them to reveal the social status.
In this paper, We propose a novel RElational learning

framework based on Social status Analysis (RESA) to better
predict labels of linked nodes through selecting influential
agents of higher social status. Social status is used for
constructing robust social dimensions based on social media
content. Supervised models can then be built on the data
in the latent social space.
The contribution of this work is threefold:

• We exploit social connections as an indicator of social
importance to find influential individuals for RL. The
proposed framework is resilient to noisy data through
incorporating social status.

• Amathematical model is put forward to leverage social
network structures. The model enables the automatic
selection of information sources with higher social
status and then generates robust social dimensions.

• Extensive experiments are conducted to test the effec-
tiveness of the proposed model. It is demonstrated
that network classification with the proposed social
dimensions outperforms competitive baselines.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce the proposed framework. In Section 3,
we investigate incorporating social status into RL. In Section
4, we show empirical evaluation with discussion. Related
work is discussed in Section 5. Conclusion and possible
future work are presented in Section 6.

2. RESA FRAMEWORK
Social media platforms enable users to label themselves

through user profiling and content subscription. Since
such labels are often unavailable and may be incomplete,
it is of great significance to predict such labels of social
actors with limited training information. Rather than
merely focus on the network structure [22, 32], we focus on
social media content. Since social content is idiosyncratic,
informal and casual, we examine how to generate latent
social dimensions in the presence of misinformation and
noise by incorporating social status. In this section, we will
introduce our motivation of the proposed framework and

formally formulate the problem and introduce intuitions and
the general framework of RESA.

2.1 Motivation
Social actors are multidimensional, which indicates that

social status should also be evaluated from different aspects.
Existing social influence prediction algorithms often produce
a scalar to represent individual status, which overlook
individuals with high status but is not universally central.
In this work, we reduce social status into two perspectives:
global social status and local social status in a specific
domain. Next, we describe details of the two aspects.

Figure 1 shows two illustrative examples for incorporating
social status into relational learning, where the area of circles
and heights of rows in the data matrix indicate the social
status. Figure 1(a) illustrates why existing RL methods
are prone to low performance without considering social
status. Since nodes marked with letters are connected by
more people, their information is supposed to be more useful
than information generated by others. As shown by the
data matrix, without considering it, information generated
by important users like Barack Obama are treated the same
with anybody else, though their posts are more important.

Figure 1(b) illustrates how social status works for RL.
Through upweighting importance of nodes with greater
centrality, information from nodes of higher social status
are better focused. The problem is that the iterative mu-
tual reinforcement between neighbors of existing centrality
measures forces less popular communities to be overwhelmed
by the globally influential groups, since communities are
of different levels of activeness. As shown in Figure 1(b),
although b and c may be less important than d and e, once
node a is selected, b and c are more informative. Thus, b
and c represent social actors with high social status but are
of less centrality. For example, though Barack Obama and
Pope Francis are more important globally, it is favorable to
select social actors from diverse groups and backgrounds,
such as athletes and professors, as well.

In this work, we aim to select social actors with high
social status and upweight the content they generate during
training. The content is extracted from their posts and
social status depends on global centrality and local social
influence. Next, we will introduce formulation and general
framework of the problem.
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Figure 2: Relational Learning with Social Status Analysis.

2.2 Problem Formulation
Consider V ∈ Rn×m is the attribute matrix, where

V = (v1,v2, . . . ,vm) and each row is represented as vi,
which is the attribute vector of user i. The columns may
refer to user attributes depending on different websites. A
is the adjacency matrix of the underlying social network
dataset with each entry Aij equaling to one if i follows
j and equaling zero otherwise. A label set y represents
certain social tags and each user owns one or multiple
labels. We aim to predict labels of a user given the network
structure and his/her social media content. More formally,
the problem is stated as follows:

Input
a user-attribute matrix V , an adjacency matrix A and
the training information matrix Y tr = {0, 1}mtr×t,
where t is the number of labels and mtr is the number
of training instances.

Output
labels of test users, Y te = {0, 1}mte×t, where mte is
the size of testing data.

The social labels can be obtained from different sources
in different platforms. For example, Flickr users can
join different groups and BlogCatalog users are able to
subscribe and add tags for themselves. Such explicit group
memberships and interest tags can then be extracted as
labels. A user usually joins various groups and subscribes
various interest tags.

2.3 General Framework
Latent social dimensions have been proposed to transform

user links to intrinsic features for RL [32]. Since interests
of an individual are often complex, such social dimensions
enable user interests to be better represented. Different from
existing RL methods which only regard social links as an in-
dicator of homophily, we view them as an indicator of social
status, which represents the weights of a user and its content.

For example, if a user has been followed by numerous people
and has higher social influence in a social network, his posted
content is more probable to be useful and of better quality.
Thus, we first adopt linkage analysis algorithms to calculate
how important a user is globally. Locally influential nodes
are important for modeling structures of social networks.
As mentioned in [1], local forceful nodes are important for
preventing misinformation during the process of information
aggregation. Thus, we further propose to construct social
dimensions through leveraging the local social influence as
well as global influence using social relations. The detailed
procedure of our proposed work is illustrated in Figure
2, which consists of two steps: constructing latent social
dimensions and learning a relational classifier.

Dimension Extraction: First, we concentrate on ex-
tracting latent dimensions from social media content. Social
actors are assumed to be equally weighted by existing
methods. As social media content in real world is noisy,
information from influential sources should be zoomed in.
This inspires us to incorporate a weight into the extraction
procedure. The social weights are derived from the network
structure. Although global social status is easy to be derived
from the network structure, local status is difficult to obtain.
In order to highlight more local influencers from small groups
and balance contribution from different communities, we
introduce a intra-group exclusive sparsity regularizer. It
stimulates representative nodes in small groups to be higher
weighted. A toy example is depicted in Figure 2, where
the area of each circle represents its importance. In our
framework, the influencers with high local social status are
better focused, meaning that Node b and c are of more
importance than e and d.

Relational Classifier Construction: After the social
dimensions are generated, social actors are mapped to the
new space and represented by latent factors. Supervised
learning algorithms, such as regression and classification,
can then be employed upon them to enable network clas-
sification. The dimension can easily be extended through
combining more features generated from other sources, like
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Figure 3: Curves of different cost functions in the
range from -1 to 1.

network structure and user profiles. In this work, we only
concentrate on the social media content. Since the classifier
determines the identity label by learning upon the features,
its prediction accuracy is an indicator telling whether the
extracted dimensions are informative and descriptive. Due
to the scalability and simplicity, we follow [32] and selected
one-vs-rest linear SVM for discriminative learning.

3. RELATIONAL LEARNING FRAMEWORK
WITH SOCIAL STATUS

In this section, we introduce how we induce latent social
dimensions. The resultant latent social dimensions should
be informative in the presence of noise. Since how to
cope with noisy links has been discussed in previous work
[32], we focus on reducing the negative impact of noise
through selecting information sources with higher social
status. The problem of social dimensions induced from
user-generated content is to obtain an optimal low-rank
representation W ∈ Rm×k (k ≪ n), which best describes
the social affiliations. As the social dimension represents the
probability an instance is assigned to a cluster, we constrain
it to be nonnegative.

3.1 Global Social Status Modeling for Rela-
tional Learning

Existing RL methods regard each instance equally weight-
ed, which ignore that social actors are of different social
status. Since the degree distribution of real social net-
work subjects to power law and has a heavy tail [2], the
equivalence assumption leads the model to be biased by less
popular users. Unfortunately, they may even be dominated
by the outliers in real world applications. Eq.(1) is a general
form of dimension reduction algorithms, and it minimizes
the sum of squared reconstruction loss:

min
W ,H

m∑
i

(vi −wiH
T )(vi −wiH

T )T , (1)

where V is decomposed into two latent factor W and H.
H ∈ Rn×k (k ≪ n) describes associations between features
and social affiliations, .
Figure 3 denotes the curve of different cost functions. As

shown in the figure, the squared loss increases quadratically
when error becomes large. So such models are optimal when

the noise n ∼ N (µ, σ2) and it is small. However, when
the noise becomes large, such algorithms are not resilient to
outliers. In order to solve the problem, we propose to adopt
the global social impact as weights of social actors to select
more important information agents for constructing social
dimensions. Given the social influence of each user, Eq.(1)
can be reformulated as:

min
W ,H

m∑
i=1

ci(vi −wiH
T )(vi −wiH

T )T

subject to

m∑
i=1

ci = 1,

(2)

where c ∈ Rm and ci is the social impact of user i, the values
are positive and sum to 1 for all users. Eq.(2) is a row based
normalization based on social impact. Influential nodes will
be upweighted and users in the heavy tail will be avoided to
dominate the calculation.

Since Eq.(2) is not jointly convex in terms of W and H,
we solve the problem in an iterative manner. By fixing one
variable each time, the objective is convex to the counter
part and the optimal solution can be obtained. Motivated
by the optimization method proposed in [8], we develop the
update rules as follows:

While fixing H, update W:

Wik = Wik
(C

⊗
V H)ik

(C
⊗

(WHT )H)ik
, (3)

where c is the global social status and will be discussed in
Section 3.4 and C = c1T

n .
⊗

is Hadamard product and has
higher operator precedence over matrix product.

While fixing W, update H:

Hjk = Hjk
((C

⊗
V )TW )jk

((C
⊗

(WHT ))TW )jk
. (4)

3.2 Local Social Status Modeling for Rela-
tional Learning

By incorporating the global social status, if there exist
some groups with significantly higher influence than the oth-
ers, the resultant social dimensions will be biased by them.
Different kinds of social affiliations are of different popular-
ity. Globally influential groups may contribute redundant
information, since users with similar social affiliations tend
to have overlapped social attributes. As mentioned earlier,
once the most influential social actor is selected, members
in the same group become less informative. Our aim is
to actively select more various nodes from different groups
through upweighting locally influential information sources.

In this section, we use c to represent individual weight for
each user. Assume we have a static affiliation matrix S ∈
Rm×g, where Sij = 1 means user i is a member of affiliation j
and g is the number of all groups, we introduce the exclusive
group LASSO penalty [16], L1,2-norm, to achieve the intra-
group sparsity for c:

L1,2(c) =
1

2

g∑
j=1

(
∑

i,Sij=1

|ci|)2. (5)

L1,2-norm first sums up over intra-group variables, and
imposes an L2-norm to regularize the sum. Its minimization
leads to intra-group sparsity. Concretely, it enforces more
zero entries to take place in a group. The property



is desirable for our assumption since it tends to select
locally representative influencers in different groups. By the
definition of L1,2-norm, Eq.(5) can be formulated as:

L1,2(c) =
1

2

g∑
i=1

(cTS∗i)
2 (6)

=
1

2

g∑
i=1

cTS∗iS
T
∗ic (7)

=
1

2
cTSST c, (8)

where S∗i ∈ Rm×1 and denotes the membership of group i.
By jointly considering the global and local social status, the
objective can be reformulated as:

min
c,W,H

m∑
i

ci(vi −wiH
T )(vi −wiH

T )T +
1

2
cTSST c. (9)

For simplicity, we replace SST by D ∈ Rm×m. Each
entry Dij denotes the correlation between user i and j in
terms of their overlapping affiliations. A large correlation
Dij forces user i ’s weight ci to be small if cj has a higher
social status. Thus, intra-group sparsity actively selects
the most influential people in one group to be upweighted.
The resultant c balances the contribution of different social
affiliations and avoids being biased by only the top group
and their redundant information.

3.3 Optimization
The optimization objective is not jointly convex to W , H

and c. We update them in an iterative manner.
When c is fixed, the optimization has the same form with

Eq.(2). Thus, W and H can be updated iteratively as
denoted in Eq.(3) and Eq.(4).
When W and H are fixed, the objective function can be

reformulated as:

min
c

m∑
i=1

citi +
1

2
cTDc

subject to lb < ci < ub,

m∑
i=1

ci = 1,

(10)

where ti = (vi −wiH
T )(vi −wiH

T )T . Then optimization
of Eq.(10) is transformed to a quadratic programming (QP)
problem and the solution is similar to that introduced in
[6]. Here we adopt two parameters, the upper bound ub and
lower bound lb. The two bounds control the maximum and
minimum weight of a node correspondingly.
The algorithm to extract social dimensions is summarized

in Algorithm 1.

3.4 Discussion
In order to select both globally and locally influential

social actors, RESA needs each user’s global social influence
and the social affiliations as input. In this section, we
introduce how we measure the global influence and their
affiliations based on network structures. We adopt the
individual PageRank centrality to reveal the global social
impact and describe a modularity maximization algorithm
to discover the community memberships of different users.
The network structure of social network can be exploited

to infer the authority of each user. Various algorithms

Algorithm 1 Social Dimension Extraction

Input: The user attribute matrix V ∈ Rm×n,
the initial latent factors W ∈ Rm×k and H ∈ Rn×k,
the social affiliation matrix S ∈ Rm×k,
the vector of individual global influence c ∈ Rm,

Output: Social dimension W , H and c.
Repeat
Calculate C = c1T

n

Update W by Wik = Wik
(C

⊗
V H)ik

(C
⊗

(WHT )H)ik
;

Update H by Hjk = Hjk
((C

⊗
V )TW )jk

((C
⊗

(WHT ))TW )jk
;

Update c by Eq.(10);
until Convergence

have been proposed to predict the social influence in a
social network [39]. Since we focus on leveraging the
connectivity to build up robust social dimensions in this
work, e directly adopt PageRank (PR) [27] to estimate the
celebrity of each user. PR was proposed for web search
to infer page importance based on the hyperlink structure
and was proven to be useful for finding important people
in a social network. Note that other centrality estimation
methods can also be incorporated into our framework. In
order to discover the social group affiliations, we adopt
the modularity maximization approach [32]. The concept
of modularity is introduced to measure the community
structure of complex networks [7, 25]. It is to measure the
deviation of interactions between users from a real social
network to a uniform random graph. Here, we denote the
social affiliation matrix as S ∈ Rm×g. S and the optimal
PageRank scores c ∈ Rm×g are then be used by the proposed
model in Section 3.2. Note that the proposed framework is
independent to the estimation of global social impact and
social affiliation and different measures can be used. To
choose the best measure is not the main focus of this paper,
which remains an important direction of future work.

4. EXPERIMENTS
In this section, we introduce experiment details to validate

the effectiveness of the proposed framework. We first in-
troduce our datasets and the methods used for comparison.
Then we discuss the performance based on the two datasets.
After investigating the sensitivity of RESA when the social
dimensionality changes, we further verify how the social
constraint works during training. Finally, we examine the
effectiveness of RESA on the datasets. Empirical results
of RL based on the social dimensions generated by other
models are also presented.

4.1 Data Sets
In order to examine how the relational classifier behaves

on real world social media websites, two datasets obtained
from BlogCatalog1 and Flickr2 are adopted in our work.
Both of them are publicly available and have been used
previous work [32, 34].

Table 1 illustrates some statistics about the two datasets.
The users are randomly sampled from the two websites, and
various kinds of intrinsic attributes are extracted as features.
We adopt the user interest tags in BlogCatalog and explicit

1http://www.blogcatalog.com/
2http://www.flickr.com/
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(a) BlocCatalog Dataset.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Degree of Nodes

N
u

m
b

er
 o

f 
N

o
d

es

(b) Flickr Dataset.

Figure 4: The degree distribution of nodes in two datasets.

Table 1: The statistics about employed datasets.
# of Instances # of Labels # of features

BlogCatalog 5198 6 8189
Flickr 7575 9 12047

group memberships as identity labels. In order to better
understand the distributions, we further explore the degree
distribution of them in Figure 4. The x-axis and y-axis are
both of log scale. As shown in the figure, the two networks
are scale-free [3], meaning that only few nodes are of a high
degree and a large portion of users have few connections.

4.2 Baseline Methods and Metrics
We select several representative methods for comparison.

As we mainly focus on leveraging social status for building
robust RL, more variants are not included. LFM only
considers the latent structure of social media content and
GNMF incorporates social relations as homophily indica-
tors. CIMNMF is robust to large noise and GSIM is used
for validating the global social status.
Latent Factor Model : Latent Factor Model (LFM) has

been proven a useful tool for reducing dimensions in real
applications. For social media analysis, since the feature
often represents the tweeted words and user tags, a negative
value is often meaningless and confusing, here we constrain
all entries of factors to be nonnegative. Such constraint can
reduce the model into Nonnegative Matrix Factorization.
We employ the model proposed by Lee and Seung [29], and
adopt the multiplicative update rule.
Graph Regularized NMF : To take advantage of the linkage

information between users in social network data, another
common assumption is users with social links should share
a higher similarity in terms of content. In order to
compare our model with such intuition, we adopt the Graph
Regularized NMF (GNMF) model [5].
Robust NMF : Traditional dimension reduction algorithms

suffer from noise due to the cost function they used. For
example, one of the most common cost function, L2-norm,
which is adopted for reducing dimensions by methods like
NMF and Principal Component Analysis (PCA), assumes
noise n ∼ N (µ, σ2) and it is small. But in real applications,
the noise are large and impulsive, and sometimes contain
large corruptions. As shown in Figure 3, squared loss

increases quadratically when its argument becomes large.
Various robust cost functions are introduced to solve this
problem in areas of signal processing and computer vision.
In this work, we adopt Correntropy Induced Metric (CIM)
to compare our proposed model with such robust methods.
Correntropy was proposed in information theoretic learning
[19] to calculate the distance between two random variables,
and it was further extended as CIM to process non-Gaussian
noise and large corruptions in measuring distance of two
vectors. In this work, the CIMNMF model [8] is adopted as
a baseline method.

Global Social Impact Model : In order to further investigate
the effectiveness of local social status, we also adopted the
method introduced in Section 3.1 (GSIM) as a baseline,
which only considers global social status.

4.3 Metrics
F1-measure: To test the prediction accuracy in terms of

both precision and recall, we adopted the F1-measure to
evaluate the performance.

Macro-F1: Since in our methods, there are multiple labels
to be predicted. For each task t, F t

1 can be computed.
In order to get the overall performance, we first adopt the
Macro-averaged F1-measure as:

Macro− F1 =
1

|T |
∑
t∈T

F t
1 , (11)

where T is the set of all identity labels and F t
1 is the F1-

measure of task t.
Micro-F1: A possible problem of Macro-F1 is, since the

size of different labels varies, the task with fewer instances
may be overemphasized. In order to cope with this problem,
we adopted Micro-averaged F1-measure. First, we calculate
the micro averaged precision and recall:

Micro− precision =
#TP

#TP +#FP
(12)

Micro− recall =
#TP

#TP +#FN
, (13)

where #TP is the number of true positives, #FP is the
number of false positives and #FN is the number of false
negatives. Then Micro-F1 is the harmonic average of Micro-
precision and Micro-recall.



Table 2: The F1-measure of different methods on BlogCatalog Data with varying training ratio.
Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%)

LFM 0.6977 0.7074 0.7223 0.7359 0.7425 0.7476 0.7562 0.7581 0.7669
GNMF 0.7221 0.7352 0.7507 0.7530 0.7546 0.7550 0.7568 0.7627 0.7707
CIMNMF 0.7170 0.7280 0.7382 0.7405 0.7476 0.7492 0.7507 0.7508 0.7518
GSIM 0.6975 0.7143 0.7283 0.7328 0.7382 0.7441 0.7495 0.7499 0.7520
RESA 0.7527 0.7566 0.7630 0.7677 0.7757 0.7760 0.7826 0.7883 0.8103

Macro-F1(%)

LFM 0.6958 0.7109 0.7206 0.7305 0.7363 0.7397 0.7532 0.7541 0.7632
GNMF 0.7162 0.7308 0.7476 0.7508 0.7512 0.7537 0.7550 0.7577 0.7695
CIMNMF 0.7116 0.7241 0.7349 0.7370 0.7406 0.7412 0.7464 0.7466 0.7481
GSIM 0.6911 0.7093 0.7252 0.7280 0.7398 0.7406 0.7459 0.7468 0.7474
RESA 0.7497 0.7525 0.7572 0.7637 0.7710 0.7779 0.7795 0.7809 0.8087

Table 3: The F1-measure of different methods on Flickr Data with varying training ratio.
Training Ratio 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1(%)

LFM 0.5443 0.5622 0.5705 0.5722 0.5746 0.5857 0.5868 0.5939 0.6065
GNMF 0.5545 0.5588 0.5677 0.5735 0.5761 0.5767 0.5792 0.5811 0.5924
CIMNMF 0.3587 0.4084 0.4556 0.4561 0.4808 0.4934 0.5043 0.5173 0.5381
GSIM 0.5395 0.5584 0.5627 0.5640 0.5646 0.5652 0.5685 0.5709 0.5724
RESA 0.5690 0.5770 0.5967 0.6086 0.6136 0.6169 0.6364 0.6394 0.6444

Macro-F1(%)

LFM 0.5306 0.5536 0.5673 0.5694 0.5687 0.5792 0.5823 0.5873 0.6053
GNMF 0.5512 0.5521 0.5615 0.5667 0.5682 0.5703 0.5762 0.5761 0.5849
CIMNMF 0.3394 0.3658 0.4126 0.4089 0.4494 0.4393 0.4764 0.4908 0.5262
GSIM 0.5364 0.5500 0.5528 0.5539 0.5560 0.5537 0.5639 0.5608 0.5673
RESA 0.5170 0.5293 0.5298 0.5366 0.5419 0.5774 0.5777 0.5894 0.6159

4.4 Experiments on BlogCatalog Data
The performance of different methods on BlogCatalog

dataset with varying training ratio, from 10% to 90%, is
illustrated in Table 2. For each training ratio, samples are
randomly split into training and testing set. We repeat
this process 10 times and report the average results. The
highest performance under each setting is highlighted in
bold face. In terms of both Micro-F1 and Macro-F1, our
proposed model RESA outperforms the baselines. As shown
in the table, the performance of GNMF, which adopts the
user graph regularization, is the closest to that of RESA.
It implies that the homophily phenomena are observed on
this dataset, meaning that users are likely to follow similar
people. When less data is used for training, CIMNMF
performs better than LFM. But it is outperformed by LFM
when more data are used for training. The performance of
CIMNMF is also worse than GNMF on both measures. This
indicates that the robust methods are not directly applicable
to social media analysis. GSIM has the lowest Micro- and
Macro-F1 among all five methods. It shows that using the
static global social status leads the model to be biased by
certain nodes, which finally resulted in an unfavorable result.

4.5 Experiments on Flickr Data
The performance of different methods on Flickr dataset

with varying training ratio, from 10% to 90%, is illustrated
in Table 3. In terms of Micro-F1, the proposed RESA
outperforms other methods all the time. Compared with
experimental results of BlogCatalog dataset, where GNMF
is the runner-up and outperforms other baselines, LFM
performs better than GNMF on Flickr dataset. It indicates
that their performance varies with different settings and they
are not stable enough. Similarly, GSIM does not perform
very well, which proves the static and global social impact

leads to a biased representation, although introducing local-
ly influential information sources can significantly improve
the performance. But since we only use PageRank centrality
in our work to induce the global influence, other centrality
measures may have different performance. CIMNMF has
the worst performance among all methods, and falls behind
RESA about 20% to 60% under different settings. This large
lag further proves that the CIMNMFmethod cannot directly
be applied to social media dataset.

But the proposed RESA fails to perform the best under
some settings when we use Macro-F1. As depicted in Table
3, though it performs the best under the setting of 80%
and 90% training ratio, RESA is outperformed by LFM
and GNMF when less portion is used for training. Since
LFM is the runner up method under most settings of Micro-
F1, the Macro-F1 result indicates that LFM, which does
not consider any graph structure, is a competitive baseline
for generating social dimensions. By both considering the
Macro-F1 and Micro-F1, a conclusion can be made that
RESA fails to identify certain tasks with fewer training
instances. But when we increase the training ratio, RESA
converges to and outperforms LFM.

4.6 Effectiveness of Social Status
In this section, we plan to test how social status works

to facilitate RL. As discussed in Section 3.4, global social
status is obtained separately from centrality measures. In
Eq.9, global social status is used as prior for c. To test
how it contributes to RESA, we propose a variant of RESA,
which initializes c using random values. We named the
model as Local Social Influence Model (LSIM). We vary
number of training iterations and record results of two
models, which are presented in Figure 5. As shown by
results of BlogCatalog and Flickr datasets, RESA converges
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Figure 5: The Micro-F1 measure of RESA and LSIM .
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Figure 6: Changes of Inter-group Entropy.

more efficiently than LSIM, meaning that it takes less
epochs to obtain the optimal solution. LSIM is able to
gradually converges to RESA with more iterations. The
result indicates that LSIM can converge to the optimal
solution with more iterations and global social status helps
the model to converge more efficiently.
Unlike global social impact, which is easily accessible, it is

difficult to validate usefulness of local social status. In order
to further investigate how the proposed model achieves to
capture the local social influence, here we define the inter-
group diversity:

P = ST c. (14)

The weight of each group can be calculated through
collecting weight of instances from the group as in Eq.(14).
We treat the group weights as their probabilities and
calculate the entropy of the underlying distribution. Thus,
the entropy measures the inter-group diversity of group
weight distribution. Figure 6 denotes the changes of
inter-group entropy. As shown in the figure, the entropy

increases with the number of iterations. At first it fluctuates
around between 2.535 and 2.540, and finally converges
after more iterations. The results indicate that the L1,2-
norm is effective in increasing inter-group diversity and thus
selecting influencers of high local social status.

4.7 Sensitivity of Latent Dimensionality
In this section, we vary the dimensionality of social

dimensions and observe the performance on both datasets.
The dimensions are changed in the range of 10 to 100.
The corresponding results on BlogCatalog and Flickr data
are illustrated in Figure 7. As denoted by the figures,
both Micro- and Macro-F1 increase significantly when the
dimensionality is small. The increasing ratio decreases when
there are more dimensions and finally converges when k
increases to 60 or more. When k increases to 100, the Macro-
F1 on BlogCatalog data and the Micro-F1 on Flickr data
even decrease. The results prove that user behaviors are
idiocratic: when there are too few social dimensions, it fails
to describe the idiocrasy. But a too large dimensionality
is also meaningless, since the extra dimensions are not
informative and may worsen the performance.

5. RELATED WORK
Relational learning refers to the learning over relational

information between connected instances. Unlike traditional
machine learning tasks, the connections made the classical
i.i.d. assumption no longer applicable. In order to predict
labels of linked instances, various methods have been pro-
posed. Collective inference has been proposed to classify
graph nodes based on the network structure [10, 15], where
the graph structure of a node is often transformed into
its features. The structural features are further fed to a
supervised learning framework, which iteratively predicts
class labels of unlabeled examples. Such methods are able to
achieve a better accuracy through capturing autocorrelation
between labels of neighbors.

Besides merely focusing on the relationship between one
hub friends, other models are proposed to capture the
long-distance autocorrelation [38]. They assume there
exist hidden topics, where connections between users and
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Figure 7: The sensitivity in terms of different varying dimensionality.

social attributes of users are generated according to their
group memberships. Such latent memberships are used for
learning a supervised model to classify connected nodes. In
[24], Neville and Jensen propose to replace the soft clustering
with disjoint clusters, and use such cluster memberships as
features to infer labels of social actors. The hard clustering
manner reduces the computational cost, but it requires each
actor to be assigned to one group. The assumption may not
hold for real world social networks, since some nodes may
not show a clear relationship to any groups. The strong
assumption forces these nodes to be assigned randomly and
thus bringing in noise.
Learning latent social dimensions based on social con-

nections, attributes and social media content has attracted
much attention from both RL [32] and other related classifi-
cation tasks on social media instances. Since social content
is often of high dimensionality and noisy, theses methods
solve the problem through learning a low rank representation
social actors, which can be regarded as feature extraction.
Another more direct way is to select discriminant features
based on the latent social affiliations[30]. Since social con-
nections and social media content are often noisy, methods in
this stream which assume all nodes are equally weighted are
not resilient to outliers. In order to infer user weights from
social connections, PageRank [14] and topic propagation [31]
have been adopted. A static social weight can reflect how
globall influential a node is globally, but learning with such
a weight may bias the model with influential groups. Nodes
from the same group may introduce too much overlapped
information, which is unfavorable. In our work, we use
global influence as a prior and actively upweight local
influencers from small groups, so as to achieve greater inter-
group diversity.
Our work is also related to matrix factorization and sparse

machine learning methods. Matrix factorization has been
used in various applications such as recommendation [35]
and distance metric learning [36] to reduce dimensionality.
Sparse learning has been proposed to enforce the data
representation to have more zeros. The structures of sparsity
include group level [23], tree level [18], differences between
features [33] and so on. Most sparse learning algorithms
focus on learning a sparse representation for instances [9],
while our work aims to select informative instances. Nie

et al. propose to select representative instances from the
dataset using L2,1-norm [26]. The proposed model is
different since we measure how informative a node is based
on its social status and the social group it belongs to.

6. CONCLUSION AND FUTURE WORK
The availability of social relations enables RL algorithms

to better model and predict data instances in a network
environment, where the i.i.d. assumption no longer holds.
In this paper, we investigate how to leverage the global
and local social influence for RL. To capture global social
context, we adopt PageRank centrality to weight the im-
portance of different nodes. To capture the local social
influence, we force individuals in a same group to compete
with each other, thus obtaining the intra-group sparsity.
The inter-group sparsity enable influential nodes in small
communities to survive and reduce overlapped information
from the top influential groups. With these solutions, we
propose a framework RESA to integrate local and global
social influence for constructing the latent social dimensions.
Experimental results on real-world datasets show that the
proposed method outperforms under most settings. We also
conduct experiments to further understand how the local
social status works.

There are several possible directions remaining to be
investigated in the future. First, as new users may join the
community and social media content and social relations of
existing social actors may evolve overtime, it is challenging
to efficiently update the model. In our paper, the exclusive
group LASSO forces nodes to be either influencers or non-
influential nodes. But in reality, a hierarchy may exist
among social actors. Thus, we plan to explore whether
different structures are hidden behind social status, and
how other kinds of sparse learning methods can help to
better model social influences. Third, we will investigate
centrality measures other than PageRank on analyzing the
social network structure.
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