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ABSTRACT
Social networks have been instrumental in spreading rumor such as

fake news and false rumors. Research in rumor intervention to date

has concentrated on launching an intervening campaign to limit

the number of infectees. However, many emerging and important

tasks focus more on early intervention. Social and psychological

studies have revealed that rumors might evolve 70% of its original

content after 6 transmissions. Therefore, ignoring earliness of

intervention makes the intervening campaign downgrade rapidly

due to the evolved content. In real social networks, the number of

social actors is usually large, while the budget for an intervening

campaign is relatively small. The limited budget makes early

intervention particularly challenging. Nonetheless, we present

an e�cient containment method that promptly terminates the

di�usion with least cost. To our knowledge, this work is the �rst

to study the earliness of rumor intervention in a large real-world

social network. Evaluations on a network of 3 million users show

that the key social actors who earliest terminate the spread are not

necessarily the most in�uential users or friends of rumor initiators,

and the proposed method e�ectively reduces the life span of rumors.
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1 INTRODUCTION
With the blistering expansions in recent years, social media has

become an attractive platform for information dissemination. The
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interconnections between social actors allow for the communi-

cation of time-sensitive information. However, social networks

have also cultivated the widespread of rumors. For example, a

piece of rumor sent by a compromised Associated Press Twitter

account wiped out over $136 billion in equity market value within

ten minutes
1
.

Despite its importance in maintaining “quality” real-time commu-

nications, surprisingly little has been studied about the earliness of

intervention, i.e., how quickly the rumor di�usion can be terminated.

Existing intervening systems mainly focus on reducing the ultimate

number of infectees [7, 35, 38]. However, according to the traditional

social and psychological studies, a rumor evolves so rapidly that

most details would be altered after 6 transmissions [2]. Therefore,

ignoring the lifespan of rumors leads to more variants being

generated that may result in greater in�uence. An example is the

urban legend of Ebola: when potential cases appeared in Newark,

false rumors of pandemic outbreaks arose in social media. As a

common practice of reducing infectees, authoritative and in�uential

sources broadcast to debunk it. However, the rumor evolved into

di�erent variants that circulated for a long time, such as the virus

can spread through air and salt water cures Ebola
2
.

Existing intervention methods that focus on reducing infectees

unnecessarily result in an early termination. They model rumor

intervention as a multiparty in�uence maximization problem, and

the main intuition is to �nd those key in�uential users, given a par-

ticular group of rumor initiators, that minimize (or maximize) the

in�uence of rumors (or factual information). Therefore, in�uential

nodes with a higher centrality measure are usually selected for the

campaign of factual information, while users that locate remotely

from the centered nodes are overlooked. Allocating more budget

to the center leads to fewer infectees, but rumors may circulate a

longer time among less approachable users.

In this work, we postulate an alternative debunking strategy

that rapidly terminates the di�usion of rumors, and we also give

the justi�cation behind our choices with theoretical analysis and

empirical evaluations. The main contributions of the work are

summarized below,

• We propose to study the earliness of rumor intervention

and formally formulate the problem in the context of social

networks;

1
https://www.washingtonpost.com/news/worldviews/wp/2013/04/23/

syrian-hackers-claim-ap-hack-that-tipped-stock-market-by-136-billion-is-it-terrorism/

2
http://time.com/3479254/ebola-social-media/
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(a) Earliness of NS and EIL.
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(b) Costs of NS and EIL.

Figure 1: We compare NS and EIL in terms of costs and
earliness. As shown in Figure 1(a), to achieve similar results,
NS is much faster and requires fewer iterations. As shown
in Figure 1(b), EIL requires a smaller budget to achieve the
same result.

• Prove the NP-completeness and provide an approximation

approach that e�ciently captures the key factual informa-

tion initiators that terminate rumor di�usion at an early

stage.

• Conduct extensive experiments with three real-world

social network datasets to understand the working of

di�erent aspects for the proposed approach.

Rest of the work is organized as follows: in Section 2, we employ

exploratory studies to present the motivation of the work. In

Section 3, we formulate the problem of early intervention of rumors.

In Section 4, we prove the NP-completeness of the problem and

provide an approximation method that is theoretically bounded.

Experimental results on real-world social networks are described

in Section 5. Section 6 presents related research and Section 7

concludes the work.

2 EXPLORATORY STUDY
The current containment methods can be classi�ed into immuniza-

tion and real-time intervention approaches. In the �rst, before a

rumor starts spreading, the optimal set of nodes and/or links are

immunized (e.g., blocking and removing) to make the social network

robust to future attacks [9, 39, 48]. In the second, the optimal set of

users are found to launch a debunking campaign after a rumor starts

spreading [7, 17, 20, 27–29, 35, 37, 38]. Although the term “early”

has been mentioned in previous work [28], however, all existing

approaches only optimize and evaluate the number of infectees. In

order to explore the possible way to early intervention, we compare

the earliness and in�uence of two frameworks.

Without loss of generality, we choose generic methods in each

category. We choose NetShield (NS) [9, 39] for immunization

methods, which is the state-of-the-art approach. It �rst exploits the

spectral property [14] of graphs for large-scale immunization and it

is e�cient to optimize. The problem of real-time rumor intervention

has been �rst introduced by Budak et al., and they prove that it is an

NP-complete problem and they o�er a near-optimal solution named

EIL [7]. Both EIL and NS have been well studied and extended to

various intervention tasks [9, 17, 27]. We conduct experiments

with real-world Twitter data, consisting of 19,240 nodes (users) and

3,933,718 edges. The dataset is publicly available through the Social

Computing Data Repository
3
.

Figure 1(a) shows the earliness of the two methods. Since

they both focus on the number of “saved” infectees, we vary the

percentage of saved nodes and observe the time needed by each

method. A node is saved if it would be infected in the absence of the

intervention [7]. Time is represented by iterations of transmissions

which is discrete. We can see that to save the same number of

nodes, NS terminates the rumor spread at the earlier stage. Since

the required budget (number of seed nodes) is a main concern in real

applications, in Figure 1(b), we vary the budget size and observe the

percentage of saved nodes. Given the same number of seed nodes,

EIL signi�cantly outperforms NS in saving more nodes.

Based on the results, we draw the following observation: though

NS seems to be a better tool to achieve the goal of early intervention,

the required large budget makes it less practically useful. NS aims

to �nd the optimal set of nodes for decreasing the vulnerability of

the global graph in the context of network design, such as computer

network intrusion. The size of the optimal set of nodes linearly

increases with the number of nodes in a graph. Whereas in digital

rumor intervention, the budget for a particular piece of rumor is

usually limited; and it is also impractical to permanently block a

large number of nodes for immunization purposes. In this work, we

will seek to early intervene rumor spread with least cost. Our main

intuition is that given the locality of the initial infection, many

nodes that lead to a global robustness are redundant to a particular

piece of rumor.

3 PROBLEM DEFINITIONS
Traditional information di�usion models study the roles of certain

nodes during the process of information being viral. Since they

mainly focus on a single-party campaign, information di�usion

models cannot be used to model the interaction between multiple

campaigns. Though several methods have been proposed to model

multi-party information di�usion, the factor of earliness, which is

of practical signi�cance in real applications, has been ignored. In

this work, we try to model earliness directly.

3.1 Information Di�usion Model
In this subsection, we introduce the di�usion model of rumors

in a social network. In the di�usion model, a social network is

considered as a directed graph G = (N ,E), consisting of nodes

(people) N and edges (social relationships) E. Let M and F denote

the di�usion of a rumor and factual information respectively. For

each node in a network, it can be infected by either information or

be inactive as initialized. The initial set of nodes in�uenced by M
and F are denoted as P(M) and P(F ). We assume that people highly

rely on social in�uence in forming their opinions [19], as a result,

the infection can be caused by initialization or sequentially by one

of the neighbors.

Considering the characteristics of rumors, we introduce three

properties of the di�usion model. First, for the brevity of presen-

tation, we let the di�usion of M and F start at the same time. The

setting is generalizable to cases where M starts earlier than F since

all infected nodes before F starts can be regarded as initialized

3
http://socialcomputing.asu.edu/



rumor infectees in another instance of the same problem. Second,

we assume people are more likely to believe the factual information

than a rumor [21], so when an inactive individual is in�uenced by

M and F at the same time, the individual will be in�uenced by F .

Third, in order to make the problem computationally tractable, we

assume the di�usion to be progressive, i.e., an inactive individual

would be in�uenced by either information, and once being active,

it cannot turn back to inactive or switch to the other status.

The di�usion starts with the network G, and two initial sets of

nodes P(M) and P(F ). If an individual node u becomes infected by

rumor M or immunized by the factual information F at timestamp

t , it attempts to in�uence all its inactive neighbors at timestamp

t + 1. In this work, we assume the time to be discrete as timestamps.

Therefore, an early intervention means fewer timestamps and fewer

times of rumors to be transmitted. The di�usion happens only once

for every edge, and it operates in discrete timestamps. The di�usion

keeps running until no more inactive nodes are infected.

3.2 The Computational Problem
Based on the conceptual de�nitions, we introduce our problem and

formally de�ne the computational problem of the real-time early

intervention of rumors.

As discussed earlier, immunization methods are faster in contain-

ing rumors. Immunization methods like NS exploit the structural

and spectral properties of social graphs. In particular, the structural

property implies that nodes in a graph are usually scattered into

di�erent clusters (communities), and the spectral property indicates

that nodes between di�erent clusters have a higher value in the

�rst eigenvector. Therefore, the main idea of NS is to block nodes

between communities, and when the infection starts, only the local

area will be in�uenced and the global graph is immunized. To better

illustrate the idea, we show the process of a rumor spread under

di�erent intervention methods in Figure 2. The x-axis represents the

progress of the di�usion, where 30% means 30% of all timestamps

have passed. The y-axis represents the inter-group entropy. We

�rst calculate the community membership of social actors with the

CESNA method in SNAP toolkit [25], which can e�ciently detect

communities in big graphs. Given the community membership

C ∈ R |N |×K , where K is the number of communities, and the

probability of a community is pi =

∑|N |
j=1Ci, j
|N | , and the inter-group

entropy can be calculated as,

e = −
K∑
i=1

pi log(pi ), (1)

which measures how well nodes from di�erent communities are

blended. It can be seen that, under EIL, rumors are viral in

more clusters of nodes, while NS constrains rumors in fewer

communities. Containing rumors in fewer communities not only

leads to early intervention, but may also be more practically useful:

as investigated in recent work [12], online communities are formed

with the coherence of beliefs [1, 5], and they may quickly turn into

an echo chamber of rumors due to the biased self-con�rmation and

their selective narrative.

Our main intuition to reduce the budget of NS is that many nodes

selected by NS are “covered” by others given a particular (set of)
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Figure 2: The change of inter-group entropy with the
progress of rumor di�usion. A higher entropy value indi-
cates more groups are infected.

seed node(s). Through empirical studies, we show that intuitive

measures such as distance to the seed cannot be used to determine

the relationship of being covered, and it is actually an NP-complete

problem. Here, we denote the set of nodes that best immunize the

graph as the immunization set I [39, 48]. Next, we will formally

de�ne the problem of Early Intervention of rumors with Minimum

Cost (EIMMC) as follows.

De�nition 3.1. Early Intervention of rumors with Minimum

Cost (EIMMC) : Given a social network G = (N ,E), and rumor

originators P(M) ∈ N and the immunization set I ∈ N , the target

of EIMMC is to �nd the minimum budget k and the corresponding

optimal set of factual information originators P(F ) ∈ N , |P(F )| = k ,

so that all nodes in I are guaranteed to be immunized before being

reached by the rumor.

4 EARLY INTERVENTION OF RUMORS
In this section, we introduce how we conduct early intervention

of rumors. We �rst prove the NP-completeness of the proposed

approach. In order to provide an e�cient solution, we introduce a

greedy strategy that is theoretically bounded.

4.1 NP-Completeness of EIMMC
In order to prove the NP-completeness of EIMMC, we introduce

the de�nition of the Set Cover problem below,

De�nition 4.1. Set Cover problem(SC): Given a set of elements

U = {1, 2, · · · ,n} and a set ofm subsets of S = S1, S2, · · · , Sm , the

Set Cover problem is to �nd the minimum number of sets covering

all elements in U such that the union of S is U .

SC is an NP-complete problem and cannot be solved in polyno-

mial time. Later we will use SC to help prove the NP-completeness

of EIMMC. As it may be easier to convince a user of the factual

information, we assume the high e�ectiveness property of F ,

meaning that an individual in P(F ) will activate its neighbors in

the next timestamp in a deterministic manner. The assumption

alleviates the di�culty of solving EIMMC, however, we will show

that the simpli�ed problem is also di�cult.

Theorem 4.2. EIMMC is NP-complete even with the high e�ec-
tiveness property.



Proof : Let S = {S1, S2, · · · , Sm } be the sets of an SC problem

and S1 ∪ S2 ∪ · · · Sm = {a1,a2, · · · ,an }, we construct an EIMMC

problem below.

• We create a graphG ′ with two kinds of nodes u andv , and

create a nodeui for a set Si , and a nodevj for each element

aj . We build an edge from ui to vj if aj ∈ Si .
• Introduce an infected node set P ′(M), and construct an

edge from any node in P(M) to v1,v2, · · · ,vn .

• Let the immunization set I ′ include all v , i.e., I ′ =
{v1,v2, · · · ,vn }.

Therefore, the SC problem is reduced to an EIMMC problem with

the graph G ′, the rumor originators P ′(M) and the immunization

set I ′. Since the problem is NP-complete, we will provide an

approximate solution that is theoretically bounded.

4.2 Approximate Solution for EIMMC
Theorem 4.3. There is no o(ln(n))-approximation solution for the

problem of EIMMC.

Proof : Since there is no o ln(n)-approximation for the SC problem

according to the result of inapproximability [13], following the

proof of Theorem 4.2, there is no o ln(n)-approximation for the

problem of EIMMC.

Theorem 4.4. There exists O(ln(n))-approximation solution for
the problem of EIMMC.

Proof : Given the rumor originators M , using Breadth First Search
(BFS) method, we can estimate the earliest time of each individual

in I that will be infected. Then the problem of EIMMC is to �nd the

minimum set of nodes in the graph that can in�uence individuals in

I before being infected. In particular, we de�ne these nodes as the

roots of the search trees named R = r1, r2, · · · , rl , and l is the least

number of roots that protects I given a particular P(M). Therefore,

each node in R immunizes (covers) a certain number of nodes in I .
So EIMMC can be transformed to an instance of the SC problem

within polynomial time. Since there is an O(ln(n))-approximation

for SC, there is also an O(ln(n))-approximation for the problem of

EIMMC.

Details of the approximation algorithm can be found in Algo-

rithm 1. In line 1, we use BFS to search nodes that need to be

immunized in the immunization set I given a particular M . In line

2, we �nd nodes that can reach I ′(M) before they are infected, and

I ′(M)i is the ith element of I ′(M). V are the candidates for P(F ).
From line 3 to line 11, we �nd the covered nodesH of each candidate

seed inV . Therefore, the problem is transformed to �nding the least

number of sets (H ) that cover all units (I ′(M)). From line 12 to line

15, we search for the optimal sets in a hill-climbing scheme, and

the approximation threshold is tightly bounded by (1 − 1/e) [13].

Line 16 returns the optimal set of nodes for the factual information

campaign with the least budget. The candidate immunization set

I (M) can be obtained beforehand in an o�ine manner.

4.3 Submodularity of EIMMC
Due to the NP-completeness of the EIMMC problem, we proposed

an approximation algorithm to greedily search for a near-optimal

solution. However, an approximation method is bounded by a

margin of (1− 1

e ) only if the outcome function is submodular [30, 41].

We de�ne the outcome function as O(P(F )), and it denotes the

users that are in�uenced by a certain set of factual information

initiators. We need to prove that O(·) is submodular by showing

it has a diminishing return. That is, given P(F ) and P ′(F ) where

P(F ) ⊆ P ′(F ), the marginal bene�t of adding another initiator i
to P(F ) is always greater or equal to adding it to P ′(F ): |O(P(F ) ∪
{i}) −O(P(F ))| ≥ |O(P ′(F ) ∪ {i}) −O(P ′(F ))|.

In our work, we aim to cover as many nodes in immunization set

as possible. If immunization set can be better covered, the rumor

spread can be terminated in an early stage. Since it is extremely

di�cult to accurately estimate the exact number of infected nodes,

for simplicity, we denoteO(P(F )) by the nodes in the immunization

set that can be covered by immunizing P(F ). Following conventional

practice, we assume the di�usion process is happened in discrete

timestamps [18, 35]: active nodes infect their neighbors at each

timestamp, and the timestamp will be tagged with the edge between

the active node and the infectee. Note that every edge will be

assigned at most one timestamp since a node can be activated only

once.

Given a graph G = (V ,E) with P(F ) and P(M) simultaneously

starting their campaign, we derive two activation graphs GF and

GM for the cascade of factual information and rumors, respectively.

From the �rst timestamp, for each node i ∈ P(F ) and node j ∈ PM ,

we randomly select i,u and (j,v) and activate the corresponding

node u and v and assign the timestamp to the edge. The selection

is based on the node degree
1

du
, where du is the degree of node u.

By repeatedly infecting more nodes, some nodes in immunization

set will be in�uenced by the factual information campaign. The

expected outcome in terms of coverage of immunization set can

be denoted by O(P(F )) = |E(GF )(I )|, which is the number of edges

that are linked to immunization set nodes activated by factual

information. We prove the diminishing return by presenting the

following lemma.

Lemma 4.5. In the activation graph GM , there exists at least one
path from a node in P(M) to a node that is both in the immunization
set and GM . In the activation graph GF , there exists at least one path
from a node in P(F ) to a node that is both in the immunization set and
GF . For both paths, we denote the timestamp as tMi for node i ∈ GM
and tFj for node j ∈ GF .

In order to prove |O(P(F ) ∪ {i}) −O(P(F ))| ≥ |O(P ′(F ) ∪ {i}) −
O(P ′(F ))|, we need to show that there exists a node v ∈ I , such

that v ∈ O(P(F )) and v ∈ O(P ′(F ) ∪ {i})\O(P ′(F )). To this end, we

present the following two lemmas to prove equivalence:

Lemma 4.6. The su�cient conditions for v ∈ O(P(M)) are
• v ∈ GF (P(F )) and v ∈ GM (P(M));
• There exists a timestamp tFv for any edge of v in GF (P(F ))

that is smaller than or equal to the smallest timestamp of
any edge of v ∈ GM (P(M)).

Lemma 4.7. The su�cient conditions forv ∈ O(P ′(F )∪{i})\O(P ′(F ))
are as follows

• v ∈ GM (P(M)) and v ∈ GF (P(F ) ∪ {i});
• There exists a timestamp tFv for any edge of v in GF (P(F ) ∪
{i}) that is smaller than or equal to the smallest timestamp
of any edge of v ∈ GM (P(M));



Table 1: Notations and corresponding descriptions

G = {N ,E} A graph G with nodes N and edges E
M, P(M) rumor and its initiators

F , P(F ) Factual information and its initiators

t Timestamp

I Immunization set

u,v,w Nodes in a graph

• For all j ∈ P ′(F ), the smallest time stamp among all
edges in GF (P

′(F )) is larger than the smallest timestamp
in GM (P(M)).

Theorem 4.8. The outcome function O(·) is submodular.

It is easy to prove thatO(·) is monotonic. Therefore, the marginal

gain of O(·) is diminishing and the greedy approximation is tightly

bounded by (1 − 1

e ).

Algorithm 1 Algorithm of Solving EIMMC

Input: G = N ,E, P(M), I (M),D = ∅, P(F ) = ∅
Output: P(F )

1: For n ∈ P(M), use BFS to construct paths from n to nodes in

I (M). Denote the connected nodes (leaves of BFS paths) as I ′(M)

2: For n ∈ I ′(M), reversely use BFS to �nd nodes vi that can

reach n, i is the length of the shortest path, i.e., v0 = n, ∀w ∈
P(M),w = v j , j ≥ i; Denote the set of vi as Vn
3: For i = 1 to |I ′(M)|
4: For u ∈ Vi ∪

i−1
k=1 Vk

5: Add edge from u to I ′(M)i
6: For j = i + 1 to |I ′(M)|
7: If u ∈ Vj , add edge from u to I ′(M)j ;
8: End for

9: Denote nodes that connect by u as Hu
10: End for

11: End for

12: While |D | < |I ′(M)|
13: Select w = argmax

u ∈∪|I
′(M )|

i=1 Vi
|Hu \ D |

14: P(F ) = P(F ) ∪w , D = D ∪ Hu
15: End while

16: Return P(F )

5 EXPERIMENTS
In this section, we evaluate our approach, compare the results with

established baselines, and discuss insights gained. In particular,

we aim to evaluate the proposed approach from the following

aspects: (1) e�ectiveness at di�erent networks with di�erent

distributions; (2) e�ectiveness at di�erent rumor originators. Here

the e�ectiveness means the earliness of intervention and the

required budget size for intervention.

5.1 Datasets
We use three real-world networks, including the Twitter social

network
4
, the contact network of Flickr

5
, and the collaboration

network of DBLP
6
. Twitter and Flickr datasets have been widely

used in social network studies. The academic network is a relatively

sparse network that captures key features of social networks [34].

• Twitter Social Network: This dataset is extracted from the

Twitter social network. A node is a Twitter user, and a

directed edge from i to j means i is followed by j. The

dataset contains 19,240 nodes and 3,933,718 edges with an

average node degree of 204.

• Flickr Contact Network: This network covers all the contacts

of Flickr users. A directed edge is established from i to j if i
contacts j. This dataset consists of 20,809 nodes connected

by 390,629 edges with an average node degree of 18.

• DBLP Collaboration Network: The DBLP network is ex-

tracted from the DBLP computer science bibliography

that covers the co-authorship. A connection is established

between two nodes (authors) if they publish at least

one paper together. The network contains 317,080 nodes

connected by 1,049,866 edges with an average degree of 3.

The Twitter and Flickr datasets are obtained through the Social

Computing Data Repository
7
, and the collaboration network is also

publicly available
8
.

5.2 Comparison Results
Baselines: In order to compare with competitive methods that

tackle the problem of early intervention, we compare with the real-

time intervention method EIL. Since the immunization method such

as NS requires a budget signi�cantly greater than that of real-time

intervention methods, NS is not adopted for the �rst experiment

on real-time intervention. In order to prove the necessity of

the proposed framework and test whether simple heuristics can

e�ectively terminate rumor spread and reduce the budget for NS,

we construct two baseline methods below.

• PROXIMITY: Given P(M) and a budget k , we select nodes

according to the increasing order of the shortest distance
to P(M). Here, distance is the length of the shortest path

between two nodes and we adopt the shortest distance

between the node and any node of P(M). This method is

to test the heuristic that neighbors of rumor initiators can
quickly intervene the spread.

• NS+PROXIMITY: Given I (M) and a budget k , we select

nodes according to the increasing order of the shortest

distance to P(M). This method is to test the heuristic that

the immunization set nodes that are closer to the rumor
initiators can quickly terminate the spread.

Earliness of intervention: To the best of our knowledge, this

paper is the �rst work that aims to deal with the earliness issue. To

evaluate earliness, we conduct experiments as follows. Intuitively,

4
https://www.twitter.com/

5
https://www.�ickr.com/

6
http://dblp.uni-trier.de/

7
http://socialcomputing.asu.edu/

8
https://snap.stanford.edu/data/com-DBLP.html



the number of timestamps can be reduced by increasing the budget

(the number of factual information initiators). For example, an

extreme case is that all neighbor nodes of the rumor initiators

are selected to be immunized, then the di�usion only happens in

zero timestamp. Hence, comparing the earliness is equivalent to

comparing the needed budget for each method to contain rumors

within certain time.

On the three datasets, we set the timestamps for rumor inter-

vention to be 2, 5 and 10. We test each method with a large budget

and keep reducing it until the time request cannot be ful�lled.

We randomly select nodes to be rumor initiators 10 times, and

the average least budget is reported to constrain rumors within

T timestamps. As depicted in Figure 3, the proposed approach

performs the best among all the methods under di�erent settings,

i.e., requiring the least budget for early intervention. For most

cases (DBLP |T | = 2, 5, 10; Flickr |T | = 2, 5, 10 Twitter |T | =
5), NS+PROXIMITY is the runner-up method. The result shows

that nodes that are both close to the rumor initiators and in

the immunization set of NS are relatively more e�ective for

early intervention. PROXIMITY, which is another heuristic-based

baseline method, is outperformed by NS on most cases (DBLP

|T | = 2, 10, Flicker |T | = 2; Twitter |T | = 2, 5), which shows the

redundancy of NS in intervening a speci�c rumor campaign. Since

reducing the number of infectees is an NP-complete problem, and

EIL is the approximation method that is bounded by (1 − 1

e ), EIL

is theoretically the best tractable method. However, according to

the empirical results, directly applying EIL does not necessarily

produce an early plan. Our method can well complement with

existing quantity-based methods by providing an approach toward

reducing the timespan of rumor spread.

A trade-o� between earliness and quantity: To meet the

target of early intervention, methods other than EIL su�er from a

greater number of rumor infectees. Now we are investigating the

trade-o� between earliness and the quantity of infected nodes of

the proposed method.

We denote the number of rumor initiators as |M |. By varying

the size of M , from (1) the y-axis we can observe the quantity of

infected nodes; and from (2) the x-axis we can observe how early

the intervention was. For each setting, we repeat experiments 10

times and report the average results. The M rumor initiators are

chosen at random. For each method, the time of intervention may

vary in di�erent rounds of experiments, so we also average time

length.

As depicted in Figure 4, the proposed approach performs best

among all the methods under di�erent settings in terms of earliness.

On the other hand, EIL best reduces the ultimate number of rumor

infectees. On the Twitter network (from Figure 4(a) to Figure 4(c)),

EIMCC reduces over 50% of the rumor’s lifespan comparing with

the best baseline method, and on the Flickr and DBLP network,

the reduction is over 60%. Although we do not focus on the �nal

in�uence, EIMCC outperforms baselines other than EIL in most

experiments (except |M | = 100 and |M | = 500 of DBLP) while

delivering the best of earliness.

We can also see that EIMMC constrains the rumors within the

least number of communities and prevents it from further spreading.

Through observing the curves in Figure 4, we �nd that the increase

of infectees usually has a big jump, e.g., EIL, Proximity and EIMMC

between the second and third timestamp in Figure 4(a). This is

because a rumor reaches the “tipping point” and becomes viral in

another community. Such “jump” is unfavorable since it shows a

community has turned into the “echo chamber” of the rumor, and

the rumor may be better trusted, quickly evolved, and more di�cult

to deal with. Traditional approaches, such as EIL on Flickr dataset

with |M | = 500, may have more than one “jump”, while EIMMC

has only one of such jumps in all the experiments.

We see that simple heuristics cannot deal with either the ultimate

in�uence or the earliness of intervention. It would be convenient

if nodes that are closer to P(M) or nodes in the immunization set

that are closer to P(M) can lead to an early intervention. However,

Proximity, which is based on the shortest distance to P(M), result

in the largest number of infectees under most settings as well as

the longest lifespan. Proximity+NS performs better comparing with

Proximity. However, it still leads to a longer timespan than EIMMC.

This is because the nodes in the immunization set that are closer to

P(M) may be redundant given a particular rumor.

Another interesting �nding is that, comparing results on dif-

ferent networks, the rumor di�usion in a denser graph where the

average degree is higher is easier to intervene at an early stage.

Intuitively, a denser graph makes it easier for rumors to reach more

nodes. However, a denser graph also enables the factual information

campaign (F ) to easily in�uence more users. Therefore, with proper

selection of nodes, a denser graph may be easier to protect. In this

work, we regard the problem of EIMMC as an instance of the vertex

cover problem. A denser graph leads to larger sets in SC, which

makes it easier to cover vertices with fewer sets.

Budget of intervention: In this work, we postulate the redun-

dancy in the immunization set. Here we will discuss how much

EIMMC reduces the budget of intervention given particular rumor

campaigns. In order to determine the budget for the proposed

method, we �rst use NS to calculate the immunization set and

the budget for NS. Then we apply Algorithm 1 to calculate the

budget for EIMMC. The immunization set is greedily expanded

until the earliness of the intervention can no longer be improved.

Details of NS can be found in [39].

Table 2 illustrates the budget of EIMMC and NS. We vary the

size of rumor initiators and observe the corresponding budget.

Note that we increase the budget of EIMMC if it leads to a slower

intervention. Therefore, the results show how much EIMMC can

reduce the budget without any loss of earliness. According to the

results, over 70% of the immunization set can be removed, and the

required budget of EIMMC linearly increases with |M |.

6 RELATEDWORK
Since the famous study on the psychology of inaccurate and false in-

formation [2], e.g., rumors and urban legends, much work has been

done in understanding the mechanism of rumors. There is ample

previous work on building mathematical models for the spreading of

rumors, i.e., describing the growth and decay of the actual spreading

process with simulated population and networks [11]. Such models

are typically proposed for characterizing dynamics of rumors

with stochastic approaches, in speci�c network structures such as
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Figure 3: Given a certain social network, we vary the size of rumor initiators |M | and observe the budget of each method
needed to terminate rumor di�usion within a target time |T |. Methods that require a smaller budget are more e�ective in
early intervening rumors.

Table 2: Budget of EIMMCandNSwith di�erent datasets and
size ofM .

|M | 10 20 30 40 50 100 500

Twitter

NS 153 172 179 188 201 220 240

EIMMC 28 33 36 40 55 63 45

Flickr

NS 140 146 155 163 170 182 200

EIMMC 36 41 48 53 51 58 66

DBLP

NS 130 142 147 153 155 170 201

EIMMC 31 33 34 47 49 53 61

scale-free [32]. However, existing information and misinformation

di�usion work focuses on estimating the impact of rumors on

simulated networks in a small scale [46]. We focus on approaches

that directly intervene rumors in real time.

In the context of rumor intervention, Budak et al. explore

augmenting the traditional in�uence di�usion techniques to �nd

the optimal nodes to launch an intervening campaign [7], by

introducing a competitive party into the traditional In�uence
Maximization (IM) approaches. There are two classical models for

IM, i.e., Linear Threshold (LT) and Independent Cascade (IC). Borodin

et al. study competitive in�uence di�usion under the extension of

the LT model [6]. Bharathi et al. study the IC model and provide an

approximation algorithm to maximize the spread of the in�uence

of a single factual information spreader. In addition, Kostka et
al. regard rumor intervention as a game theoretical problem and

analyze the e�ect of the time lag of a delayed factual information

campaign [23]. Since the budget in real-time intervention is usually

limited, Nguyen et al. aim to limit the spread of rumors to a

prede�ned rate with the least possible set of nodes [35]. However,

the existing approaches emphasize on reducing the ultimate number

of infected nodes. By contrast, we address the problem of early

intervention. As a result, our work �rst introduces the earliness as

a metric to evaluate intervention approaches, which is important

in dealing with rumors due to the quick spread and evolved

content [2].

Tong et al. �rst propose to immunize a certain number of nodes

to increase the robustness of the network to future attacks [39].

Their idea is to contain the rumors or virus in a small group locally,

and they provide a greedy algorithm to e�ciently �nd the optimal

set of nodes via leveraging the structural and spectral properties

of graphs. The method has been well studied and extended to

solve node immunization problems [9] such as group immunization.
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Figure 4: The di�usion progress with di�erent number of rumor initiators and on di�erent datasets. A curve stops progressing
to the next timestamp if the rumor is terminated then. We report the lifespan of rumors (horizontally) and the number of
infectees (vertically). For the task of early intervention, a shorter lifespan is more favorable.

However, given a particular set of rumor initiators, we postulate

the redundancy of the immunization set given a speci�c rumor

campaign, and the proposed approach can be applied to more

problems such as the epidemic containment and the group-level

immunization that share strong contagion patterns.

Our work is also related to studies on information di�usion.

There are various models which are designed to abstract the pattern

of information di�usion, such as SIR Model [22], Tipping Model [8],

Independent Cascade Model [21] and Linear Threshold Model [21].

Traditional information di�usion models ignore the interaction

between multiple campaigns, which cannot be directly applied here.

In order to accelerate the di�usion models, more scalable methods

have been proposed. SIMPATH [15] reduces the computational

time through �ltering out paths without enough con�dence, and

Maximum In�uence Arborescence (MIA) [10] was also proposed to

accelerate the computation of independent cascade model. Various

other acceleration algorithms are also available [16, 31]. Our work

can also be accelerated by integrating with MIA.

Another stream of research focuses on spreaders of rumors.

They aim to �nd patterns revealing a malicious account, and use

these patterns to block potential spreaders. For example, pro�les

of automatic generated accounts may look similar, duplication of

pro�les between malicious accounts can be used to detect rumor

spreaders [33, 40, 42, 43]. Lee and Kim propose to reveal the patterns

hidden behind malicious accounts [24], so as to �ltering them

in an early stage [44]. Agglomerative hierarchical clustering is

adopted in their work, where the likelihood of two names being

generated by an identical Markov chain is used for measuring

distance, and characters are used as features. After obtaining

clusters of similar account names, a supervised method is adopted

to classify whether a name cluster is a group of malicious accounts.

Account names have also been quantitatively examined [47]. More

features including behavioral ones are further incorporated in

such algorithms [4]. In contrast to existing work that focuses

on the spreader of rumors [3, 36], network properties of rumor

propagation [26, 45] or the content of rumors, we concentrate

on �nding the key users in a network to early intervene the

propagation.

7 CONCLUSION
An early intervention is especially crucial in containing widespread

of devastating rumors, such as fake news and false rumors. This

work is the �rst to study the earliness of intervening rumors spread

in a real-world social network. We focus on social interactions

between people, and we aim to �nd the key social actors that can



terminate the spread of rumors at an early stage. Although the

budget is relatively small compared with the nodes in a social

network, we can identify the least number of nodes that lead to

early intervention. We achieve this by proving the NP-completeness,

which is a precondition for �nding a near-optimal approximation,

and developing a hill-climbing method that is theoretically bounded.
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